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 A typical Cloud-Based application is scale-out, latency sensitive, and usually involves 

processing of enormous amounts of data. Web Searches, Streaming services, online transactions, 

etc., run on massive Warehouse-Scale Computers that are powered by processors designed to run 

traditional scale-up personal computer applications.  

Since Architectural decisions for the processors that run the Internet today were made 

with a desktop computer in mind, memory resources are often overprovisioned and 

underutilized. In this work, five different Cloud-Based applications from the CloudSuite 

benchmark suite are characterized according to their interaction with memory resources and their 

level of data sharing. Threads of each workload are distributed among nodes to study how 

different scenarios of Last Level Cache and Memory Controller Channel sharing can affect 

performance. Furthermore, the impact of co-running applications is also taken into consideration, 

and a scheduling algorithm intended to run on top of the Operating System scheduler is 

proposed.  
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CHAPTER ONE: INTRODUCTION 

During the past few years, a number of Cloud services have emerged and become a part 

of everyday life for most people. Social Networks, Web Searches, Streaming Services, etc., are 

translated into millions of parallel computations running on a cluster of interconnected servers 

which constitute the foundation of the Cloud itself.   

Cloud applications tend to be scale-out, meaning more servers are added as growth 

demand increases. Even a small percentage of improvement in performance in a single server 

processor, can make a huge difference in the overall performance of the Warehouse-Scale 

Computers that constitute the Cloud.  

Cloud servers are built with multiprocessor systems, consisting of a group of cores per 

socket that often share at least one level of cache and the interconnection to memory. This 

sharing of resources can result in either benefiting or degrading performance. For instance, 

threads of an application with high levels of data sharing running on the same node (or in a 

configuration where memory resources are shared) can benefit from this scenario, since a single 

copy of the data in the shared cache would be used by all active threads, and fewer memory 

accesses would be required. Moreover, cache coherence and main memory traffic would be 

reduced.  

Threads of applications with low levels of data sharing on the other hand, will contend 

for resources (because fetching new data will cause cache evictions), resulting in a degradation 

in performance if placed in the previous scenario of shared memory resources. 

An important aspect of modern server multiprocessors is that they were designed with 

typical desktop scale-up applications in mind, resulting in architectural inefficiencies [1] for 

Cloud workloads, which are generally scale-out. 
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Characterizing the memory resource sharing interference on Cloud-Based applications 

could provide an insight to future server multiprocessor system design, as memory provisioning 

decisions could be made based on this results. 

 Although related work [24] has shown that there is no sizable effect from scheduling 

threads to cores to share memory resources in one way or another, there is evidence [4] that 

indicates how thread-to-core mapping can improve or worsen performance, depending on the 

data-sharing characteristics of the application and the distribution of threads to determine how 

memory resources are to be shared.  

In this work, five of the CloudSuite [1][2] benchmarks were selected to study how 

scheduling threads of Cloud-Based applications under different Last Level Cache and Memory 

Controller Channel sharing scenarios can have an impact on the performance of servers. Unlike 

existing Datacenter benchmarks, CloudSuite provides end-to-end metrics, uses large datasets, 

and accurately simulates popular online services, leveraging from Docker containers to ease the 

deployment of their content. 

 The general behavior of the workloads is analyzed by first running the benchmarks 

without specifying any CPU affinity, and it is observed that the benchmarks are executed on all 

active cores by default due to the OS being the entity in charge of distributing threads across 

nodes, without taking memory resources into consideration. Then, the architecture of the 

hardware is studied (an Intel® Xeon® Processor E5-4620 is used) to determine what is the best 

way to distribute memory resources across active threads of an application running by itself or 

with another Cloud workload. 

Three possible memory resource scenarios are identified according to the selected 

architecture: all threads running on the same node (to study the behavior of the benchmarks 
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when both LLC and memory controller channel are shared) no sharing of LLC or memory 

channel (which means a maximum of 4 cores at a time should be used, since there are 4 available 

nodes), and LLC and memory controller sharing but by only two cores at a time. 

 Initially, each application is run alone on the server under the three mentioned memory 

resource scenarios. It is observed that how LLC and the memory controller channel are shared 

does in fact have an impact, but not on all applications, as previously noted in related work. 

 To further validate these findings and rule out a large enough cache that might misrepresent 

a contentious application as one that actually benefits from sharing, the applications are run 

alone again, this time with eight threads at a time, only to observe the same trend. 

 It is also verified that the impact in performance is due to memory resource sharing, by 

measuring L3 Hits and traffic towards memory.  

 Additionally, because there is more than one application at a time running in a server, two 

applications are placed running under the previous sharing scenarios, to find the optimal case for 

the application running alone will not necessarily be the same when there is a co-running 

benchmark. 

 Finally, based on the results from the experiments conducted in this work and a heuristic 

approach, a Scheduling Algorithm to assign threads to cores as optimally as possible, intended to 

run on top of the OS scheduler, is proposed. 
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CHAPTER TWO: BACKGROUND 

Although a large group of servers performing parallel computations for diverse users [15] 

is also known as Datacenter, the underlying system powering the Cloud is not exactly that. The 

servers residing in Datacenters operate independently under the domain of different companies, 

have non-homogeneous hardware characteristics and run diverse types of small to medium 

applications.  

Servers running Cloud Services on the other hand, are usually interconnected, grouped to 

offer a determined service (such as web searches or social networks), have similar hardware and 

software platforms, and belong under the same management domain. They are usually referred to 

as Warehouse Scale Computers (WSC). 

Each server in the Cloud is powered by multiprocessor systems. As described in [13], 

computers are categorized, from a parallelism point of view, as either SISD (Single Instruction 

stream Single Data stream, also known as uniprocessor), SIMD (Single Instruction Multiple 

Data, meaning one instruction is executed by different processors using different data streams), 

MISD (Multiple Instruction streams, Single Data streams), and MIMD (Multiple Instruction 

streams, Multiple Data streams, each processor executes instructions and processes data 

independently).  Most general purpose multiprocessors are based on MIMD because this model 

leverages thread-level parallelism. 

2.1 Multiprocessors  

 A Multiprocessor is a type of computer composed by a tightly coupled group of 

processors that share a memory address space, running under the same operating system [13]. 

According to their memory organization, multiprocessors are divided in two groups:  
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1. Symmetric (shared-memory) multiprocessors (SMP, also referred to as Uniform Memory 

Access multiprocessors, UMA), which usually have a low number of cores, all of which 

will have symmetric access to a centralized memory.  

2. Distributed Shared Memory multiprocessors (DSM), which are able to support a larger 

number of cores since the memory is distributed, allowing for more bandwidth and less 

latency. DSM are also known as Non-Uniform Memory Access multiprocessors 

(NUMA). Figure 1 illustrates a typical NUMA multiprocessor. It encompasses several 

multicore nodes interconnected via a network. Memory is shared across nodes, although 

the access time to the local portion of memory on each node will be less than the access 

time to a remote memory.      

 

Figure 1: NUMA multiprocessor 

 One of the challenges in distributed memory systems is cache coherence. If a traditional 

snooping protocol were to be used, traffic towards memory would increase considerably, and the 

very purpose of distributing memory to allow for more bandwidth towards memory would be 

meaningless.  
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For this reason, NUMA multiprocessors sometimes use a directory protocol as an 

alternative to snooping-based cache coherence. However, snooping protocols are also used in 

multiprocessors; in section 2.2.2, an overview of MESI protocol is given, as this is the one 

implemented in the hardware used in this work.   

2.2 MESI protocol 

 MESI (Modified, Exclusive, Shared, Invalid), is a multiprocessor invalidate protocol. It 

reduces bus traffic [17] by using write-back instead of write-through caches. The current state of 

each cache line (2 bits) can be as follows: 

 Modified: the cache line has been modified and is not consistent with main memory 

(dirty).  

 Exclusive: the cache line is consistent with main memory (clean) and is the only cached 

copy. 

 Shared: the cache line matches main memory, but several copies of the line exist in other 

caches.  

 Invalid: Line is not valid (no processor has it) 

Figure 2 shows a State Transition Diagram for MESI. The dotted lines indicate transactions 

initiated by the bus. Continuous lines indicate transactions initiated by processor. 
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Figure 2: MESI protocol State Transition Diagram [21] 

Each cache line will change its state as a function of memory accesses. The two possible 

operations are Reads and Writes to cache blocks. In the event of a Read miss, the block is loaded 

and its state will change to Exclusive if it was uncached in memory [19] or Shared if it was 

already shared, modified or exclusive. 

If there is a Write miss, the block is loaded and marked Modified. All other cached copies 

are invalidated. On a Write Hit to an Exclusive or Shared block, the block is changed to 

Modified in both cases but invalidated for other cached copies only in the latter case.  

2.3 Cloud Software 

In general, Cloud characteristic applications have a high level of parallelism, handle large 

amounts of data, and are latency sensitive. They are often divided into offline and online services 

[14]. Online services comprise typical real-time transactions such as e-mail, web searches, etc., 

and offline services are used in large-scale data processing, either to generate a parallel 
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computation from a large dataset, such as graph processing or to analyze data to be used in an 

online application, such as processing satellite images for location services. Due to the scale-out 

nature of these applications, growth is addressed by adding more servers [16]. As a consequence, 

the performance of each individual server will shape the overall performance of the Cloud. 

Unfortunately, the design of processors currently driving the Cloud was carried out with 

desktop scale-up workloads. As the Internet becomes more popular, a number of Cloud 

benchmarks have emerged, favoring scale-out behavior. In [15], an overview of the 4 most 

representative datacenter applications is presented:  Web Search, Memory Caching, MapReduce, 

and Graph Analysis. A general overview of the survey is presented in this section.  

- Web Search: The usual operation of a web search engine in a system with multiple 

servers starts by crawling, indexing and organizing data with a batch application. 

Web Search characteristic benchmarks adjust the size of the index so that it can be 

fitted into memory in order to avoid network and storage I/O. The index is divided 

evenly across servers, and then each server will use the index to calculate the 

relevance scores for each page before sending them to an aggregator which ultimately 

will produce the results for the user.  

- Memory Caching: Due to the high latency of disk accesses, many popular services 

(such as Facebook) cache their non-media data in memory. One of the most popular 

frameworks for memory caching is Memcached, defined in [21] as “an in-memory 

key-value store for small arbitrary data (strings, objects) from results of database 

calls, API calls, or page rendering”.  This arbitrary data is held in slabs inside the 

memory; both the data and slab size are determined by Memcached with the goal of 

increasing cache hit rates.   
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- MapReduce: the basic idea behind MapReduce is that computations are performed by 

splitting data across nodes. It consists of a run-time system, which is in charge of 

managing the deployment of the Map and Reduce functions specified by the 

programmer. The Map part applies a function to each section of the input data and 

produces a key-value pair, which is to be computed by the Reduce function to 

produce a result.  

- Graph Analysis: Graphs are frequently used by online service providers to analyze 

user preferences and produce recommendations. In the case of social networks, 

Graphs are widely used to evaluate the influence of a user or an organization. 

Frameworks for graph processing allow asynchronous, dynamic, parallel 

computations, and task ordering according to data locality.    

2.4 Related Work 

 Since Cloud computing has emerged as a utility in recent years, there is an increased 

effort in studying both the characteristics of Internet applications and hardware. Most studies 

have identified inefficiencies in modern hardware, due to the fact that server processors were 

designed with scale-up desktop applications in mind.  

As explained in [1], the high instruction cache miss rate, low level of parallelism, and low 

requirements for bandwidth from scale-out applications, are some of the aspects that were not 

accounted for when designing server processors. They find that the instruction working sets of 

scale-out applications exceed both L1 and L2 capacity, but are smaller than LLC capacity. 

Moreover, LLC (which occupies more than half the die area) size beyond 6MB has minimal 

performance impact on scale-out workloads, due to their massive dataset size. They also point 
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out that because the complexity of Cloud applications is not taken into consideration, simple 

next-line prefetchers are not ideal for server multiprocessor systems.  

In [3], server multiprocessor inefficiencies are also pointed out. The authors use some of 

the CloudSuite benchmarks to study the behavior of scale-out workloads on modern processors. 

They use Intel VTune to read performance counters and draw some micro-architectural 

conclusions, such as  the high Instruction Cache miss rate from scale-out workloads, the low 

instruction level parallelism and memory-level parallelism from scale-out workloads, and also 

observe that bandwidth to memory is usually overprovisioned. 

 The PARSEC suite is used in [23], and it is shown that how threads are scheduled to 

share cache in different scenarios, has no impact on performance. In [4], the impact of memory 

resource sharing is studied for industry-strength datacenter applications; it is observed that thread 

to core mapping does have an effect, with up to 40% swings in performance for certain 

applications. Multiple thread-to-core mapping scenarios are considered in this publication, the 

ideal mapping for applications running alone on a server is identified, and it is observed that the 

optimal thread to core mapping will change depending on the co-running application. They 

propose three key characteristics of memory-application interaction that can determine the 

optimal thread-to-core mapping: Memory Bandwidth Usage, Data Sharing, and Cache Footprint.  
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CHAPTER THREE: CLOUDSUITE OVERVIEW 

 Since the Internet became an every-day life utility, the popularity of Cloud-based services 

such as web search, video streaming, social networks and multiple on-line shopping related 

transactions, has led to an increase in the demand for more robust servers to power Warehouse 

Scale Computers. Architectural decisions made for the design of processors being currently used 

in modern Cloud servers are based on traditional desktop computer benchmarking tools that 

mostly benefit scale-up workloads [1]  

 CloudSuite 3.0, a benchmark suite of emerging online services, provides real-world latency 

sensitive applications that handle large datasets to simulate common cloud massive data 

managing and gives an accurate performance assessment of modern server processors. It was 

designed based on a detailed michroarchitectural review of scale-out workloads.   

 By using performance counters, CloudSuite authors in [1] find that scale-out workloads 

have high instruction cache miss rates, have low instruction and memory-level parallelism, have 

low requirements of bandwidth and see no performance benefit from large LLC. They also 

analyze the most popular online services and find common characteristics across scale-out 

workloads: 

- Scale-out run on large datasets that are divided into a large number of hosts. 

- Requests served by scale-out workloads do not share any state. 

- Account for unreliable machines in the underlying running infrastructure with     

specific application software. 

- High-level task managing is handled with inter-machine connectivity. 

 Moreover, they find inefficiencies in the design of processors currently running Cloud 

applications. For instance, the high instruction cache miss rate from scale-out workloads cause 
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stalls, the oversized LLC adds significant latency (from fetching instructions from LLC), and the 

simple next-line prefetchers do not account for the complexity of Cloud applications, which as 

described by the authors in [1], are written in high-level languages, execute OS code, use third 

party libraries and have non-sequential access patterns. 

 CloudSuite aims at assessing the performance of modern hardware by representing real-

world setups. Five CloudSuite benchmarks were selected for this work: Graph Analytics, In-

Memory Analytics, Data Serving, Web Search, and Media Streaming. They are classified into 

Offline and Online Benchmarks. The following section comprises a high level overview of the 

functionality of these applications. 

3.1  Offline Benchmarks 

 CloudSuite offline benchmarks [5] do not offer real-time metrics such as throughput or 

latency, but instead perform computations over large datasets. The performance criteria will be 

completion time.  

3.1.1 Graph Analytics 

 The input of this benchmark is a large Twitter graph dataset that is processed using 

GraphX. The output of the benchmark is the influence of each user in the dataset, computed with 

PageRank. The job is distributed among all active or specified threads with significant 

communication across cores, due to the nature of the dataset.  The performance metric is 

Running time, or the time it took the server to calculate the influence of each user. 

3.1.2 In-Memory Analytics 

 This benchmark works as a recommendation system. The client container will take a 

dataset holding a large list of movies and will output a ranking based on an algorithm that uses 

matrix factorization to calculate user preferences. The performance metric is Running 
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(completion) time or the time it took for the application to compute recommendations. This 

benchmark will run in memory, and it is possible to allocate a certain amount of memory for 

each run, depending on the selected dataset size. 

3.2 Online Benchmarks 

 CloudSuite online benchmarks provide real-time metrics, such as latency and throughput. 

These applications aim at simulating popular online services, such as streaming, search engines, 

and other types of online queries. 

3.2.1 Data Serving 

 This application is based on YCSB (Yahoo! Cloud Serving Benchmark) which is basically 

a framework to measure performance of data store systems [6]. The objective of this benchmark 

is to simulate the behavior of popular online services that rely on NoSQL databases, such as 

airplane ticket reservations. 

 In a typical scenario where a reservation is to be made, the user will send a read request to 

a frontend server. A read request is then sent from the frontend server to a backend server, which 

will consult in a NoSQL database, and reply with the requested information. Once the user 

decides to proceed with the reservation, a write request will be sent to de frontend server and 

then from there to the backend server. 

 CloudSuite Data Serving models this behavior with a client container that will act as a 

request emulator and will send read and write requests to a backend server (a Docker container 

that starts a Cassandra server and mounts the dataset volume, held in a Docker container as well). 

A Docker network is also created to interconnect all the components. The output metrics for this 

benchmark are throughput (read and write operations per second) and latency. 
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3.2.2 Web Search 

 Based on the Apache Solr search engine framework, CloudSuite Web Search simulates a 

typical online search scenario, where a client sends requests to several index nodes with a 

determined query. In this case, a server Docker container will hold several index nodes images, 

and a client Docker container will send queries. A Docker network is used to interconnect all 

components. The output of this benchmark used in this work is throughput, given in ops/sec 

(search operations per second). 

3.2.3 Media Streaming 

 This benchmark is comprised of a client based on httperf (traffic generator) that will send 

requests for video streaming to a server. A Docker container for each is created along with a 

dataset that contains several videos of different durations and qualities and a Docker network to 

interconnect all components. The performance metric is Net I/O (the streaming bandwidth) given 

in Kbps. 
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CHAPTER FOUR: SANDY BRIDGE OVERVIEW 

 The four node distributed shared memory processor used in this work (Intel Xeon E5-4620) 

is based on the microarchitecture code name Sandy Bridge. As explained in [7] it consists of a 

Front End unit in charge of fetching and decoding instructions into micro operations, a 

superscalar component capable of sending up to six micro-ops per cycle, and an in-order 

retirement unit that will ensure the results of the execution of the micro-ops follow program 

order.  

 Typically, the processor will search for the next instructions to execute, depending on the 

block selected by the Branch Prediction Unit, first on the Instruction cache and then progressing 

into the remaining levels of cache, L2 and L3, and then main memory. The generated flow of 

micro-ops is then dynamically scheduled and executed according to data order (instruction 

retirement will be consistent with program order).  

 4.1 Cache Hierarchy 

 There are three levels of cache in this architecture. In the first level, the L1 D (level 1 data 

cache) is “private” for each core, but can be shared in the event that multithreading is supported 

and enabled. There is also a L1 Instruction cache, with the same size as L1 DCache (32KB). L2 

cache (256KB) is also dedicated to each core, but unified for instructions and data. LLC is 

interconnected to all cores in a node (also referred to as socket in this document) by a ring 

topology. For the Intel Xeon E5-4620, the LLC (L3) capacity is 16MB. L1 (both Data and 

Instruction), L2, and L3 are 8-way associative.     

 Snooping is managed across all levels of cache with MESI [8] (modified, exclusive, shared, 

invalid) cache coherence protocol. Each cache line on L1D, L2, and L3 has two MESI status 
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flags. Each of the flags will be marked according to the cache line state. Load and Store requests 

are managed in L1D.  

4.1.1 Memory Reads  

 When data is required by an instruction, the core will read to L1, L2 and then L3 (memory 

if there is an L3 miss). All data contained in L2 and L1 should also appear in L3. Each L3 line is 

flagged to indicate which cores might hold that data, and if it is the case, L1D and L2 of a core 

that apparently has said data, will be looked up. If modified data is to be fetched, it will be 

referred to as a “dirty hit”. If the data to be fetched is unmodified, it is called a “clean hit”.  In 

general, a clean hit will have lower latency than a dirty hit (60 cycles vs 43). 

4.1.2 Memory Writes  

  In order to write to a memory location, the processor checks if it has the line on its L1D 

cache (in modified or exclusive MESI state). If the line is not found or is not in the right state, it 

will continue to search in the next levels of cache, caches from other cores, and memory. As 

soon as the line is in L1D, write will happen.  

4.1.3 Last Level Cache 

 The LLC is divided and shared among available cores in the node. There is one portion of 

the cache assigned to each core. Each portion has one section for data coherency, memory 

ordering, LLC misses, writeback to memory, etc., and one section for cache lines (logic and data 

array sections respectively). LLC is interconnected to cores and memory controller via a ring 

topology (the bus encompasses four independent rings: data, request, acknowledge, and snoop, 

as described in [18]) and runs at the same frequency as the core clock, unlike previous 

generations.  
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4.1.4 Memory Controller 

 Accesses from the ring domain are managed by an arbiter, which is part of the Uncore (also 

referred to as System Agent). Memory traffic is forwarded from the arbiter to the memory 

controller, which supports multiple channels of DDR (4 in the Intel® Xeon® E5-4620, as 

illustrated in [18]), each channel being capable of running memory requests independently and 

contains an out of order scheduler that minimizes latency and maximizes memory bandwidth. 

 A write to the memory controller is considered completed when it is written to the write-

data-buffer (each channel has a 32 cache-line write-data-buffer, which is flushed out to main 

memory at a different point in time, so that it does not affect write latency) [7]. 
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CHAPTER FIVE: EXPERIMENTS AND RESULTS 

 The hardware used in this work is a four socket Intel® Xeon® E5-4620 processor. There 

are 8 cores per module and each core is capable of supporting up to two threads at a time. Only 

single threaded cores are used in this experiment. Each core has two levels: L1 and L2 of 

dedicated cache. L3 is shared between cores on the same node, with a “dedicated” portion of the 

cache for each core, which will be accessed faster by itself, but can also be accessed by other 

cores. The processor runs on a Dell PowerEdge R820 server with Ubuntu trusty 14.04 kernel 

release 3.19.0-25  

 The first part of the experiment consisted in testing each one of the five chosen CloudSuite 

Benchmarks (Graph Analytics, In-Memory Analytics, Data Serving, Web Search, and Media 

Streaming) running separately without specifying thread to core mappings. By default, the 

application threads are distributed by the OS scheduler among all active cores. To verify memory 

usage and core activity, the htop system monitor was run for all measurements. 

 

Figure 3: Intel® Xeon® Processor E5-4620 Memory Hierarchy overview 
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 To assess the impact of memory resource sharing (either L3 or the memory controller 

channel on each node), and also consider the effect of running a cloud-based application 

simultaneously on different nodes without L3 sharing, four cores at a time were used. If 8 cores 

were to be used simultaneously, the scenario in which L3 and the memory controller channel are 

not shared across active threads of a given application could not be measured.  Three different 

thread to core mapping scenarios were considered according to the architecture used in this 

work:   

1. One core per node: 4 threads of the application running alone are distributed across the 

four available nodes, assigning one thread per core on each node. The objective of this 

setting is to assess the performance of each application when neither L3 nor memory 

controller channel are shared. It would be expected for contentious applications to be 

benefited from this configuration. Some degree of degradation should be perceived in 

non-contentious applications with significant data sharing.   

 

Figure 4:  4 Cores running simultaneously without sharing L3 or memory controller 

channel 

 

2. Two cores per node: 4 threads of the application running alone are distributed across 2 

nodes, with two cores per thread on each node. Both L3 and memory controller channel 

are shared in this setting; however, only by two threads at a time.  
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Figure 5: 4 Cores running simultaneously, L3 and memory controller channel are shared 

between two cores only. 
 

3. Four cores per node: 4 threads of the active application running alone will be mapped to 

four cores on the same node. L3 and memory controller channel are shared by all used 

cores. The main difference between this configuration and the two cores per node setting 

is that more traffic through the memory controller channel is expected. Contentious 

applications should perceive degradation on this setting whereas applications with 

sharing of data should perform better. 

 

Figure 6: 4 Cores running simultaneously on the same node. L3 and memory controller 

channel are shared across all 4 cores. 
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 The metric used to measure performance is the actual output of each benchmark. IPC is not 

considered since it is not a reliable indicator of performance in the case of multithreaded 

applications running on multiprocessor systems. As shown in [9], variations of IPC, either 

increase or decrease, not necessarily will reflect a performance improvement or detriment. The 

metrics used for each benchmark are enumerated in Table 1. 

Table 1: Benchmark Metrics 

Benchmark Metric Unit 

Graph Analytics Average Running Time ms 

In-Memory Analytics Average Running Time ms 

Media Streaming Average Net I/O Kbps 

Web Search Throughput  (search ops/s) ops/s 

Data Serving Throughput - R/W ops/s 

 

5.1 Benchmark characterization 

 The process of running each benchmark requires downloading and running several Docker 

containers. In general, CloudSuite offline benchmarks require an image of the container that will 

run the benchmark and also a dataset. CloudSuite Online applications rely on a dataset, at least 

one server, one client and a network container to interconnect them. In this experiment, CPU 

affinity of the benchmarking Docker container is given passing the --cpuset-cpus  <core IDs> 

argument. Core IDs are fetched from /proc/cpuinfo  by using lscpu. The corresponding ID of 

cores is shown in Figure 3. Each benchmark was run in a loop of 10 iterations per configuration, 

using different core combinations according to each type of memory resource sharing scenario 

being tested. For instance, in the 4 Cores per Node case, the benchmark was run ten times on 

each node. Core combinations are shown in Table 2.  
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Table 2: Sets of cores for each 4 core test case 

Configuration Sets of cores 

1 Core per Node 

{0,1,2,3}, {4,5,6,7} 

{8,9,10,11}, {12,13,14,15} 

2 Cores per Node 

{0,4,1,5}, {0,4,2,6}, {0,4,3,7} 

{1,5,2,6}, {1,5,3,7}, {2,6,3,7} 

4 Cores per Node 

{0,4,8,12}, {1,5,9,13} 

{2,6,10,14}, {3,7,11,15} 

 

 For each of the core set, the benchmarks were run a total of ten times. The output of each 

run is then averaged per core configuration. Figure 7 illustrates the results for offline workloads. 

The performance metric is Average Running Time (ART, given in milliseconds) for both; a 

smaller average running time means better performance. Results for online benchmarks are 

shown in Figure 8. The metric for online benchmarks is throughput, meaning higher is better. In 

both cases, the results were normalized to the output measure of each benchmark running in the 

1 Core per Node Configuration. To ensure threads were mapped as expected, the htop system 

monitor was used to verify CPU and memory usage. 

 

Figure 7: Performance results for offline CloudSuite Benchmarks: Graph Analytics and In-

Memory Analytics 
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 For offline benchmarks, there is a significant impact from running on different memory 

sharing scenarios. Both applications greatly benefit from sharing LLC and memory controller, 

meaning that there is significant sharing of data between active threads. The ART for Graph 

Analytics is 5% and 12.1% less on 2 and 4 Cores per node respectively than the ART for 1 Core 

per Node. The ART for In-Memory Analytics is 9.4% and 50.6% less on 2 and 4 Cores per node 

respectively than the ART for 1 Core per Node. Both applications show better performance when 

all of their threads are running on cores on the same node and degrade when no LLC or memory 

controller channel are shared. 

 

Figure 8. Performance results for online CloudSuite Benchmarks: Media Streaming, Web 

Search, and Data Serving. 
 

 The performance impact of changing memory resource sharing scenarios for CloudSuite 

online benchmarks on the other hand, with the exception of Data Serving, does not show any 

significant difference. There is a variation of less than 1% on the benchmark outputs 

(throughput).  
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 As for Data Serving, a lot of contention for memory resources might explain the 

degradation of running this workload on the same node. The best performance is achieved when 

no LLC or memory controller channel is shared.  

5.2 Eight Core Experiment 

 In the event in which cache is large enough to fit the data being processed by each 

benchmark, contentious applications might be mistakenly interpreted as non-contentious. To rule 

this possible scenario out, and also verify whether the impact of changing the configuration of 

memory resource sharing for Media Streaming and Web Search is actually negligible, the 

benchmarks were run using eight threads of each (mapped to eight cores). Core configurations 

are shown in table 3. 

Table 3: Sets of cores for each 4 core test case 

Configuration Sets of cores 

2 Cores per 

Node 

{0,1,2,3,4,5,6,7}, {16,17,18,19,20,21,22,23} 

{8,9,10,11,12,13,14,15}, {24,25,26,27,28,29,30,31} 

8 Cores per 

Node 

{0,4,8,12,16,20,24,28}, {1,5,9,13,17,21,25,29} 

{2,6,10,14,18,22,26,30}, {3,7,11,15,19,23,27,31} 

 

 The same approach to testing as in the 4-core case is used, only this time sharing of 

resources is not completely ruled out. In the 2 Cores per node experiment, all four nodes will be 

used, meaning LLC and memory controller channel are going to be shared by only two cores, 

whereas in the 8 core case, all available cores per node will be active on one node at a time, and 

memory resources will be shared among them. Ten iterations of each combination are run, and 

the ART for offline applications and Throughput for online applications are averaged and 

normalized to the 2 Cores per Node case. Figure 9 shows the results for Graph Analytics and In-

Memory Analytics and Figure 10 shows the results for Media Streaming, Web Search, and Data 

Serving. 
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Figure 9: Performance results for offline applications running on 8 cores 

 

 

Figure 10: Performance results for online applications running on 8 cores 

 For the eight core scenario, the same thread as in the four core case is observed. Media 

Streaming and Web Search are not impacted at all. Graph Analytics and In-Memory Analytics 

benefit from sharing LLC and memory controller channel across all of their active threads. Data 

Serving on the other hand, proves to be a contentious application, benefiting from distributing its 

eight active threads across all four available nodes. 
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5.3 Performance counter monitor 

 In order to verify the effect of sharing memory resources one way or the other (1,2,4 Cores 

per node, as discussed previousely) in terms of LLC hit ratio and traffic towards memory, the 

Intel® Performance Counter Monitor was used. This application leverages from the performance 

counters on Intel processors (enabled by a set of Model-Specific Registers (MSRs) that can be 

programmed to report architectural performance monitoring events and are consistent across 

michroarchitectures [8]) to report core and uncore michroarchitectural information. The 2.11.1 

version was run to measure L3 hits and memory traffic for each one of the selected benchmarks. 

  To make measurements as accurate as possible, all samples were taken when the 

applications were running alone on the server. One sample of each memory sharing scenario was 

used for each one of the workloads. Results from Intel® Performance Counter Monitor and the 

performance metric of the benchmark were documented according to the time recorded on the 

server timestamp. Once the Performance Monitor was started, the benchmark was then run for a 

given combination of cores (1,2,4 per node), the time of the beginning and ending of execution 

recorded, and then, results of the Performance Monitor (which were exported to a csv file) were 

compared to the previously saved times. The same procedure was then repeated for the next core 

combination. Only L3 Hit ratio and memory traffic are included in this report, as those are the 

resources that are being shared/not shared in the tests carried out in this work. 

 Since a comparison between the trend of the average performance of each benchmark from 

part 5.1 was necessary, the outputs of the benchmarks which are illustrated in Figures 11-15 

were also analyzed.  
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Figure 11: Graph Analytics normalized Running Time of sample used to take performance 

measurements 

 

Table 4: Performance measurements for Graph Analytics 

Graph Analytics Performance Monitor results 

Metric 1 Core per Node 2 Cores per Node 4 Cores per Node 

Average Mem Traffic (GB/s) 0.61679084 1.077128742 1.578444 

Average Mem Traffic  per core (GB/s) 0.61679084 0.538564371 0.394611 

Average L3 Hit ratio 0.273478836 0.33307755 0.369418667 

 

 For Graph Analytics, in Figure 11, Table 4, the trend initially observed is confirmed in this 

run. The application benefits from sharing threads on the same node, and degrades when its 

threads are split between nodes, with no sharing of memory controller channel or LLC. 

Performance monitor results show a correlation between the L3 hit ratio and memory traffic and 

the trend of the benchmark performance metric. The lowest Running time for the benchmark, 

was in the scenario of all threads running on the same node, which was also the case in which the 

L3 hit ratio was the highest (around 0.369, vs 0.333 and 0.273 in the 2 and 4 Cores scenarios 

respectively) and the traffic to memory was the lowest (0.394 GB/s, vs 0.539 GB/s and 0.617 

GB/s in the 2 and 4 Cores scenarios respectively). 
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Figure 12: In-Memory Analytics normalized Running Time of sample used to take performance 

measurements 

 

Table 5: Performance measurements for In-Memory Analytics 

In-Memory Analytics Performance Monitor results 

Metric 1 Core per Node 2 Cores per Node 4 Cores per Node 

Average Mem Traffic (GB/s) 0.265970703 0.480381704 1.5471875 

Average Mem Traffic  per core (GB/s) 0.265970703 0.240190852 0.386796875 

Average L3 Hit ratio 0.520070182 0.578910326 0.630870573 

 

 In-Memory Analytics shows the same trend as was initially observed in 5.1 (Figure 12). A 

52.8% improvement in Average Running Time is observed when comparing the 1 Core and 4 

Cores per node case. This application also benefits from having all its threads on the same node, 

but unlike Graph Analytics, traffic to memory does not degrade performance. Table 5 shows the 

performance measurement results. Most of the computations for this benchmark must occur in 

L3 (as it can also be inferred from the application name), since in the 4 Cores per Node case the 

hit rate is around 0.631, and it decreases as sharing of L3 also decreases in the two following 

cases. However, traffic to memory is also the highest for the 4 Cores per Node case, but it does 

not affect the output of the benchmark. 
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Figure 13: Data Serving normalized Throughput of sample used to take performance 

measurements 

 

Table 6: Performance measurements for Data Serving 

Data Serving Performance Monitor results 

Metric 1 Core per Node 2 Cores per Node 4 Cores per Node 

Average Mem Traffic (GB/s) 0.047459167 0.0471845 0.11754 

Average Mem Traffic  per core (GB/s) 0.047459167 0.02359225 0.029385 

Average L3 Hit ratio 0.6305 0.698475 0.7973 

 

 Contention of resources dominates the performance of Data Serving. As observerd in 

Figure 13 and Figure 8, the best throughput is obtained when running the application in the 1 

Core per Node scenario. There is an interesting point about this trend: the best and worst 

performance are not given by either the 1 Core per Node or the 4 Cores per node like the 

previous two benchmarks. Although the best one is the 1 Core per Node scenario, the second 

best is the 4 Cores per Node scenario. This trend is set by the memory traffic, as noted in Table 

6. The more traffic to memory, the better the performance will be. This actually is coherent with 

the metric of the application: read and write operations per second.  
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 Another important point from Data Serving is that there appears to be some degree of 

sharing. The L3 hit ratio is the highest for the 4 Cores per node case, decreasing by around 10% 

when running on 2 Cores per Node and further degrading in the 1 Core per Node scenario. As 

noted in [3] both Data Serving and Web Search use a parallel garbage collector that artificially 

induces application level-communication, which explains why the L3 Hit ratio is better as more 

sharing of memory resources is present.  

 

 

Figure 14: Web Search normalized Throughput of sample used to take performance 

measurements 

 

Table 7: Performance measurements for Web Search 

Web Search Performance Monitor results 

Metric 1 Core per Node 2 Cores per Node 4 Cores per Node 

Average Mem Traffic (GB/s) 0.056893236 0.085877734 0.059960042 

Average Mem Traffic  per core (GB/s) 0.056893236 0.042938867 0.01499001 

Average L3 Hit ratio 0.537934677 0.508305225 0.641316946 
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Figure 15: Media Streaming normalized Throughput of sample used to take performance 

measurements 

 

Table 8: Performance measurements for Media Streaming 

Media Streaming Performance Monitor results 

Metric 1 Core per Node 2 Cores per Node 4 Cores per Node 

Average Mem Traffic (GB/s) 0.03744159 0.057086386 1.5471875 

Average Mem Traffic  per core (GB/s) 0.03744159 0.028543193 0.386796875 

Average L3 Hit ratio 0.700281581 0.755926248 0.630164236 

 

Web Search (Figure 13, Table 7) and Media Streaming (Figure 14, Table 8) are not impacted by 

how LLC and memory controller channel are shared. Even though it appears as if there is some 

sharing benefit, the garbage collector used in Web Search gives is responsible for such behavior. 

In the case of Media Streaming, it is also mentioned in [3] that the server used in this benchmark 

tracks the number of sent packages by updating global counters. For both Media Streaming and 

Web Search, less traffic to memory is observed when compared to In-Memory Analytics and 

Graph Analytics, which could indicate that L2 is sufficient for both applications. 

 An important observation from the performance monitor data in all Cloud-Based 

applications used in this work, is that memory bandwidth is underutilized. Traffic to memory did 
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not exceed 1.6 GB/s for any application (even when all active threads were running on the same 

node), even though the processor is provisioned for 42 GB/s according to technical specifications 

[22]. 

5.4 Performance of selected CloudSuite benchmarks with a co-running application 

  How applications will share resources is to be decided by the OS job scheduler. However, 

the OS scheduler does not take memory resources into account. Moreover, in order to guarantee 

QoS, latency sensitive applications are not usually co-located with non-latency sensitive 

applications [3], which results in an underutilization of processing resources.  

 The main goal in this part of the experiment is to study whether an offline application, co-

running with an online application and viceversa will have an impact on the optimal thread to 

core mapping, assuming the best case scenario as the application running alone on the server 

with the same resource sharing configuration as in part 5.1. 

5.4.1 Methodology 

 The same combinations of 1, 2, and 4 cores per node are used. A total of 4 cores on each 

case are considered. A total of 8 threads will be run at a time, 4 for each application. In the 1 core 

per node case, 4 threads of each application will be assigned to a core on different nodes. 

Application A (either online or offline, depending on each corresponding configuration) will 

have one assigned core per thread on each node, and application B (either online or offline, 

depending on each corresponding configuration) will be configured in the same way.  In the 2 

cores per node case, two threads of each application will be running on two cores per node, and 

they will be distributed on two nodes as well. Finally, for the 4 cores per node distribution, each 

application will have four threads mapped to four contiguous cores, all on the same node. Figure 

16 shows configurations for each scenario. 
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Figure 16: Thread to core mapping for co-running applications. 

 Each co-running scenario is normalized to the benchmark running on the 1 Core per Node 

configuration in the same scenario. Since the effect of assigning threads of Media Streaming and 

Web Search to different core configurations has a negligible effect on the performance of these 

applications (when running alone with either four or eitght threads at a time), it is also verified 

that the same result is achieved when placing them along with either latency sensitive or non-

sensitive applications. In both cases, the variation in average trhoughput per configuration is less 

than 1.7%. Figures 17 and 18 illustrate this behavior. 
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Figure 17: Media Streaming co-running with offline and online benchmarks. Normalized to 1 

Core per Node configuration. 

 

 

Figure 18: Web Search co-running with offline and online benchmarks. Normalized to 1 Core 

per Node configuration. 

 

 The offline benchmarks used in this experiment, Graph Analytics and In-Memory 

Analytics show the same behavior as in 5.1, as shown in Figure 19 and 20 respectively. Both 

benefit from having all of their threads in the same node, even if both are sharing the node with 

another application using the same number of threads. These applications degrade when their 

threads are running separately. 
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Figure 19: Graph Analytics co-running with offline and online benchmarks. Normalized to 1 

Core per Node configuration. 

 

 

Figure 20: In-Memory Analytics co-running with offline and online benchmarks. Normalized to 

1 Core per Node configuration. 

 

 The nature of the co-runner of Data Serving will change the ideal thread to core mapping of 

the application dramatically, as shown in Figure 21. When running solo, the best scenario was 

when running on separate nodes. However, if threads of In-Memory Analytics are added, the 

best mapping for this application is the 4 Cores per Node scenario. If the co-runner is an online 

application like Media Streaming, the optimal scenario will be the 2 Cores per Node one. 
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Figure 21: Data Serving co-running with offline and online benchmarks. Normalized to 1 Core 

per Node configuration. 
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CHAPTER SIX: A THREAD-TO-CORE SCHEDULING ALGORITHM 

 OS schedulers do not account for memory resource sharing or characteristics of the running 

application when assigning threads to particular cores, as noted in [4]. The OS scheduler focuses 

mainly on prioritizing cache affinity and load balancing. Even though threads can be assigned to 

a determined core or cores by the programmer, this will be dependent on the underlying 

architecture of the processor and the structure of the application.  

 In this section, an algorithm to schedule threads to cores according to the characteristics of 

each application, in terms of data sharing and how they benefit or degrade depending on how 

threads are distributed to either share or not LLC and memory controller channel is proposed. 

The impact of Co-Running applications is also taken into consideration, and the algorithm will 

produce an output for Cloud-Based applications running solo or with another Cloud-Based 

workload. This algorithm does not intend to replace the existing OS scheduler, but to provide an 

approach to optimize performance and memory resource usage on top of the Operating System, 

leveraging from CPU affinity to assign threads to cores. 

 The inputs to the algorithm are: the Application type, which can be either offline or online 

and the Co-Running Application type, which can also be offline, online, or none (meaning there 

will be no Co-Runner for the given application). Online applications can either be Read/Write 

(applications that issue both, read and write requests, such as Data Serving) or Read Only 

(applications similar to Web Search and Media Streaming, which only send Read requests and 

are not significantly affected by how memory resources are shared). For Read Only Online 

applications, the assigned mapping will be 2 Cores per Node, since there is some level of sharing 

(not as much as in the 4 Cores per Node case) while at the same time fewer nodes are used in this 

scenario compared to 4 Cores per Node. 
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 The output of the algorithm will be the optimal memory resource sharing scenario (1,2 or 4 

Cores per Node, same configuration as in section 5.4.1, Figure 16)  for the requested application 

running alone or with another Cloud-Based application. The same configuration will apply to the 

Co-Running application, if there is one.  

 The possible values for the Application Type (defined as App_Type) are: Offline, 

Online_R, and Online_RW. For Co-Running Application Type, defined as Co_Run_Type, the 

values are: C_Online_RW, C_Online_R, C_Offline, and C_None. As for the output, defined as 

“Schedule” the possible values are 1_Core_per_Node, 2_Cores_per_Node, and 

4_Cores_per_Node. 

 

If App_Type = Offline then 

 Schedule = 4_Cores_per_Node; 

If App_Type = Online_R then 

 Schedule = 4_Cores_per_Node; 

If App_Type = Online_RW and Co_Run_Type = C_None then 

 Schedule = 1_Core_per_Node; 

If App_Type = Online_RW and Co_Run_Type = C_Offline then 

 Schedule = 4_Cores_per_Node; 

If App_Type = Online_RW and Co_Run_Type = C_Online_R then 

 Schedule = 2_Cores_per_Node; 

 

Figure 22: Proposed Algorithm 

 Figure 22 illustrates the proposed scheduling approach. Since Offline applications, Graph 

Analytics and In-Memory Analytics, or in general, applications that compute large amounts of 

data in a distributed fashion and produce a computation (which also have significant data 

sharing), the best scenario is to have all threads of the workload running in the same node, 

sharing LLC and memory controller channel, which is defined here as 4 Cores per Node.  
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 As described in chapter 5, Online applications that have low LLC (L3 for the architecture 

used in this work) usage, little traffic to memory, and only send read requests to a remote server 

(Media Streaming and Web Search) will run mostly on L2. For that reason, the LLC and memory 

controller channel sharing will not impact performance in this case. Initially, the 2 Cores per 

Node was assigned to this particular case, mainly because if 1 Core per Node were to be used, 

the 4 available nodes would be occupied unnecessarily, and if the 4 Cores per Node were to be 

used, the memory controller channel in that particular node would have a slight but unnecessary 

increase in traffic. However, because these two online applications are not impacted by the 

sharing of LLC and memory controller channel, the performance for the co-running application 

was also taken into consideration in this case. Due to their high level of data sharing, Graph 

Analytics and In-Memory analytics degrade significantly when their threads are not running on 

the same node (More than 50% for In-Memory Analytics and around 18% when compared 

running on 1 Core per Node vs 4 Cores per Node), whereas the degradation for Data Serving 

when running on the 1 Core per Node configuration vs 4 Cores per Node configuration is around 

5%.  

 In the case of Online applications that also send Read and Write requests to a remote server 

(such as Data Serving), the optimal memory resource sharing scenario varies depending on the 

Co-Runner. If the application is running alone, the 1 Core per Node scenario will be the best 

(because of the low level of data sharing and substantial contention of resources). If the Co-

Runner is an offline application, the 4 Cores per Node scenario will be optimal. Finally, if the 

Co-Runner is an Online application that only sends read requests to a remote server, the optimal 

mapping will be 2 Cores per Node.  
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Table 9: Optimal Scheduling results from proposed Algorithm 

 

 The prediction results from the algorithm are shown in Table 9. The predicted Best 

Configuration will apply to both, the main and co-running application. For the main 

configuration, all predicted scenarios are optimal. For the co-running applications, only the 

scenario of Data Serving co-running with either Web Search or Media Streaming would be sub 

optimal, with a ~5% decrease in throughput when compared to the 1 Core per Node 

configuration, as shown in Figure 21.         
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CHAPTER SEVEN: CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

 Five CloudSuite benchmarks were characterized according to how LLC and memory 

controller channel are shared.  

 In applications that are not latency sensitive,  handle huge amounts of data and perform a 

computation as output, such as Graph Analytics and In-Memory Analytics, sharing dominates, 

meaning these applications will benefit if all of their active threads are sharing LLC and the 

memory controller channel.  

 In applications that perform read/write requests to a remote server such as Data Serving, 

the contention of resources dominates, meaning there is very little sharing of data, and for that 

reason, this applications will degrade if LLC and memory controller channel are shared. 

 For other latency sensitive applications, with relatively small datasets, that only send read 

requests to a remote server, L2 cache is sufficient, meaning how LLC and memory controller 

channel are shared, has a negligible effect on performance. It is also observed that there is less 

traffic to main memory from these two applications (Media Streaming and Web Search) when 

compared to other applications that run on large datasets.  

 Memory bandwidth in the used server Multiprocessor system is underutlized, as can be 

inferred from the Performance Monitor data in all Cloud-Based applications used in this work. 

Traffic to memory did not exceed 1.6 GB/s for any application (even when all active threads 

were running on the same node), even though the processor is provisioned for 42 GB/s according 

to technical specifications, meaning only up to 3.8% of the available bandwidth was occupied. 

  It is also noted that a co-running application can change the optimal memory resource 

sharing scenario for latency sensitive benchmarks that send read/write requests, but has little 
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impact in the optimal memory resource sharing of offline applications and latency sensitive 

applications that only send read requests to a remote server, regardless of their level of data 

sharing or their optimal mapping. 

 Finally, an algorithm (intended to run on top of the OS) that schedules threads to cores is 

proposed, based on each Cloud-Based application characteristics and the impact of running it 

under different memory resource sharing scenarios, either alone or with a co-running application.  

7.2 Future Work 

 DDR3 is widely used in commercial servers and is optimized for bandwidth but not for 

energy efficiency. As noted in [11], 30% of the power consumption in Datacenters comes from 

DRAM; however, Cloud applications stress memory capacity and latency but use just a small 

percentage of the peak provisioned bandwidth [12]. 

 Since memories designed for mobile platforms are optimized for low energy per bit, the 

impact of running Datacenter applications on LPDDR2 based servers vs DDR3 based servers is 

studied in [12]. Although significant energy efficiency improvements are observed, there is a 

small performance penalty. An interesting experiment would be to schedule threads of different 

Cloud-Based applications (according to their characteristics in terms of data sharing and how 

they benefit/degrade from memory resource sharing) in mobile-based servers, such that LLC and 

the memory controller channel are used effectively, achieving both, energy proportionality and 

improved performance.  
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APPENDIX A: INTEL® XEON® E5-4620 SPECIFICATIONS 

  Intel® Xeon® Processor E5-4620 

Lithography 32nm 

# of Sockets 4 

# of Cores per Socket 8 

Max # of Threads per Socket 16 

Processor Base Frequency 2.2 GHz 

Max Turbo Frequency 2.6 GHz 

VID Voltage Range 0.6V - 1.35V 

Max Memory Size 384 GB 

Memory Types DDR3 800/1066/1333 

Max Memory Bandwidth 42.63 GB/s 

Instruction Set 64-bit 

L1 Dcache 32 KB, 8-Way, 64-byte size line, Writeback 

L1 Icache 32 KB, 8-Way 

L2 Cache (Unified) 256 KB, 8-Way, 64-byte size line, Writeback 

L3 Cache 16 MB, 16-Way,  64-byte size line, Writeback 

L3 Cache bandwidth 192 bytes/clock 
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APPENDIX B: CLOUDSUITE CLIENT CONTAINER PARAMETERS 

 

#Graph Analytics 

docker run  --cpuset-cpus=<cpu #s> --rm --volumes-from data 

cloudsuite/graph-analytics --driver-memory 16g 

#In-Memory Analytics 

docker run  --cpuset-cpus=<cpu #s> --rm --volumes-from data_movies 

cloudsuite/in-memory-analytics /data/ml-latest-small 

/data/myratings.csv 

#Data Serving 

docker run  --cpuset-cpus=<cpu #s> -it --name <clientname> --net 

serving_network cloudsuite/data-serving:client cassandra-server 

#Web Search 

docker run  --cpuset-cpus=<cpu #s> -it --name <clientname> --net 

search_network cloudsuite/web-search:client 172.22.0.2 50 90 60 60 

#Media Streaming 

docker run --cpuset-cpus==<cpu #s> -t --name=<clientname> -v 

$path1:/output --volumes-from streaming_dataset --net streaming_network 

cloudsuite/media-streaming:client streaming_server 
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