
www.manaraa.com

CHARACTERIZATION OF CLOUD-BASED APPLICATIONS FOR DIFFERENT

MEMORY RESOURCE SHARING SCENARIOS

by

ANA MARIA BERNAL MONTANA, B.Sc.

THESIS

Presented to the Graduate Faculty of

The University of Texas at San Antonio

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

COMMITTEE MEMBERS:

Lide Duan, Ph.D., Chair

Eugene John, Ph.D.

Wonjun Lee, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

College of Engineering

Department of Electrical and Computer Engineering

May 2017

www.manaraa.com

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10276645

10276645

2017

www.manaraa.com

DEDICATION

This thesis is dedicated to my husband Roger. Thank you for your encouragement, unconditional

support and infinite patience during my time at graduate school.

www.manaraa.com

iv

ACKNOWLEDGEMENTS

First, I would like to thank Dr. Lide Duan for giving me the opportunity to work with

him, teaching me how to do research, how to think better and more critically. For his guidance,

helpfulness and patience throughout the development of this work, I will always be very grateful.

 Thanks to Dr. Eugene John, for providing me with a different perspective of the

complexity behind the design and fabrication of computers and for his dedication in making sure

each one of his students, me included, understand the concepts of VLSI and learn by doing.

Thanks to Dr. Wonjun Lee, because due to his detailed explanations and his industry

approach when highlighting the most important aspects of the programming languages learned in

his course, I was able to improve significantly my programming skills. This has served and will

continue to serve me immensely on my academic and professional life.

 Thanks to Dr. Jeff Prevost, for sharing his industry experience on his Cloud Computing

course. The concepts I learned in his class were very useful in many challenges I encountered

during the experiments I conducted for this thesis.

Last but not least, I would like to thank Dr. Wei-Ming Lin for his support, dedication,

concern, guidance, remarkable lectures, tough exams and assignments. It was because of this that

my approach to solving problems and learning drastically changed for good, and I discovered

that Computer Architecture is my passion in life.

May 2017

www.manaraa.com

v

CHARACTERIZATION OF CLOUD-BASED APPLICATIONS FOR DIFFERENT

MEMORY RESOURCE SHARING SCENARIOS

Ana Bernal Montana, M.S.
The University of Texas at San Antonio, 2017

Supervising Professor: Lide Duan, Ph.D., Chair

 A typical Cloud-Based application is scale-out, latency sensitive, and usually involves

processing of enormous amounts of data. Web Searches, Streaming services, online transactions,

etc., run on massive Warehouse-Scale Computers that are powered by processors designed to run

traditional scale-up personal computer applications.

Since Architectural decisions for the processors that run the Internet today were made

with a desktop computer in mind, memory resources are often overprovisioned and

underutilized. In this work, five different Cloud-Based applications from the CloudSuite

benchmark suite are characterized according to their interaction with memory resources and their

level of data sharing. Threads of each workload are distributed among nodes to study how

different scenarios of Last Level Cache and Memory Controller Channel sharing can affect

performance. Furthermore, the impact of co-running applications is also taken into consideration,

and a scheduling algorithm intended to run on top of the Operating System scheduler is

proposed.

www.manaraa.com

vi

TABLE OF CONTENTS

Acknowledgements .. iv

Abstract ..v

List of Tables ... vii

List of Figures .. viii

Chapter One: Introduction ...1

Chapter Two: Background ...4

2.1 Multiprocessors ..4

2.2 MESI protocol ..6

2.3 Cloud Software ..7

2.4 Related Work ...9

Chapter Three: CloudSuite Overview ..11

3.1 Offline Benchmarks ...12

3.1.1 Graph Analytics ..12

3.1.2 In-Memory Analytics ..12

3.2 Online Benchmarks ..13

3.2.1 Data Serving..13

3.2.2 Web Search ...14

3.2.3 Media Streaming ...14

Chapter Four: Sandy Bridge Microarchitecture ...15

4.1 Cache Hierarchy...15

4.1.1 Memory Reads ..16

www.manaraa.com

vii

4.1.2 Memory Writes ...16

4.1.3 Last Level Cache...16

4.1.4 Memory Controller ...17

Chapter Five: Experiment and Results ..18

5.1 Benchmark characterization ...21

5.2 Eight Core Experiment ..24

5.3 Performance counter monitor ..26

5.4 Performance of selected CloudSuite benchmarks with a co-running application32

5.4.1 Methodology ...32

Chapter Six: A Thread-To-Core Scheduling Algorithm ..37

Chapter Seven: Conclusion and Future Work ...41

7.1 Conclusion ...41

7.2 Future Work ...42

Appendix A: Intel® Xeon® E5-4620 Specifications ..43

Appendix B: CloudSuite client container parameters ..44

References ..45

Vita

www.manaraa.com

viii

LIST OF TABLES

Table 1 Benchmark Metrics ..21

Table 2 Sets of cores for each 4 core test case ..22

Table 3 Sets of cores for each 4 core test case ..24

Table 4 Performance measurements for Graph Analytics ..27

Table 5 Performance measurements for In-Memory Analytics ..28

Table 6 Performance measurements for Data Serving ..29

Table 7 Performance measurements for Web Search ...30

Table 8 Performance measurements for Media Streaming ...31

Table 9 Optimal Scheduling results from proposed Algorithm ..40

www.manaraa.com

ix

LIST OF FIGURES

Figure 1 NUMA multiprocessor...5

Figure 2 MESI protocol State Transition Diagram ..7

Figure 3 Intel® Xeon® Processor E5-4620 Memory Hierarchy overview 18

Figure 4 4 Cores running simultaneously without sharing L3 or Memory Controller

 Channel ..19

Figure 5 4 Cores running simultaneously, L3 and memory controller channel are shared

between two cores only. ...20

Figure 6 4 Cores running simultaneously on the same node. ...20

Figure 7 Performance results for offline CloudSuite Benchmarks: Graph Analytics and In-

Memory Analytics ...22

Figure 8 Performance results for online CloudSuite Benchmarks: Media Streaming, Web

Search, and Data Serving. ..23

Figure 9 Performance results for offline applications running on 8 cores25

Figure 10 Performance results for online applications running on 8 cores25

Figure 11 Graph Analytics normalized Running Time of sample used to take performance

measurements ...27

Figure 12 In-Memory Analytics normalized Running Time of sample used to take

performance measurements ...28

Figure 13 Data Serving normalized Throughput of sample used to take performance

measurements ...29

www.manaraa.com

x

Figure 14 Web Search normalized Throughput of sample used to take performance

measurements ...30

Figure 15 Media Streaming normalized Throughput of sample used to take performance

measurements ...31

Figure 16 Thread to core mapping for co-running applications. ..33

Figure 17 Media Streaming co-running with offline and online benchmarks34

Figure 18 Web Search co-running with offline and online benchmarks34

Figure 19 Graph Analytics co-running with offline and online benchmarks35

Figure 20 In-Memory Analytics co-running with offline and online benchmarks35

Figure 21 Data serving co-running with offline and online benchmarks36

Figure 22 Proposed Algorithm ...38

www.manaraa.com

1

CHAPTER ONE: INTRODUCTION

During the past few years, a number of Cloud services have emerged and become a part

of everyday life for most people. Social Networks, Web Searches, Streaming Services, etc., are

translated into millions of parallel computations running on a cluster of interconnected servers

which constitute the foundation of the Cloud itself.

Cloud applications tend to be scale-out, meaning more servers are added as growth

demand increases. Even a small percentage of improvement in performance in a single server

processor, can make a huge difference in the overall performance of the Warehouse-Scale

Computers that constitute the Cloud.

Cloud servers are built with multiprocessor systems, consisting of a group of cores per

socket that often share at least one level of cache and the interconnection to memory. This

sharing of resources can result in either benefiting or degrading performance. For instance,

threads of an application with high levels of data sharing running on the same node (or in a

configuration where memory resources are shared) can benefit from this scenario, since a single

copy of the data in the shared cache would be used by all active threads, and fewer memory

accesses would be required. Moreover, cache coherence and main memory traffic would be

reduced.

Threads of applications with low levels of data sharing on the other hand, will contend

for resources (because fetching new data will cause cache evictions), resulting in a degradation

in performance if placed in the previous scenario of shared memory resources.

An important aspect of modern server multiprocessors is that they were designed with

typical desktop scale-up applications in mind, resulting in architectural inefficiencies [1] for

Cloud workloads, which are generally scale-out.

www.manaraa.com

2

Characterizing the memory resource sharing interference on Cloud-Based applications

could provide an insight to future server multiprocessor system design, as memory provisioning

decisions could be made based on this results.

 Although related work [24] has shown that there is no sizable effect from scheduling

threads to cores to share memory resources in one way or another, there is evidence [4] that

indicates how thread-to-core mapping can improve or worsen performance, depending on the

data-sharing characteristics of the application and the distribution of threads to determine how

memory resources are to be shared.

In this work, five of the CloudSuite [1][2] benchmarks were selected to study how

scheduling threads of Cloud-Based applications under different Last Level Cache and Memory

Controller Channel sharing scenarios can have an impact on the performance of servers. Unlike

existing Datacenter benchmarks, CloudSuite provides end-to-end metrics, uses large datasets,

and accurately simulates popular online services, leveraging from Docker containers to ease the

deployment of their content.

 The general behavior of the workloads is analyzed by first running the benchmarks

without specifying any CPU affinity, and it is observed that the benchmarks are executed on all

active cores by default due to the OS being the entity in charge of distributing threads across

nodes, without taking memory resources into consideration. Then, the architecture of the

hardware is studied (an Intel® Xeon® Processor E5-4620 is used) to determine what is the best

way to distribute memory resources across active threads of an application running by itself or

with another Cloud workload.

Three possible memory resource scenarios are identified according to the selected

architecture: all threads running on the same node (to study the behavior of the benchmarks

www.manaraa.com

3

when both LLC and memory controller channel are shared) no sharing of LLC or memory

channel (which means a maximum of 4 cores at a time should be used, since there are 4 available

nodes), and LLC and memory controller sharing but by only two cores at a time.

 Initially, each application is run alone on the server under the three mentioned memory

resource scenarios. It is observed that how LLC and the memory controller channel are shared

does in fact have an impact, but not on all applications, as previously noted in related work.

 To further validate these findings and rule out a large enough cache that might misrepresent

a contentious application as one that actually benefits from sharing, the applications are run

alone again, this time with eight threads at a time, only to observe the same trend.

 It is also verified that the impact in performance is due to memory resource sharing, by

measuring L3 Hits and traffic towards memory.

 Additionally, because there is more than one application at a time running in a server, two

applications are placed running under the previous sharing scenarios, to find the optimal case for

the application running alone will not necessarily be the same when there is a co-running

benchmark.

 Finally, based on the results from the experiments conducted in this work and a heuristic

approach, a Scheduling Algorithm to assign threads to cores as optimally as possible, intended to

run on top of the OS scheduler, is proposed.

www.manaraa.com

4

CHAPTER TWO: BACKGROUND

Although a large group of servers performing parallel computations for diverse users [15]

is also known as Datacenter, the underlying system powering the Cloud is not exactly that. The

servers residing in Datacenters operate independently under the domain of different companies,

have non-homogeneous hardware characteristics and run diverse types of small to medium

applications.

Servers running Cloud Services on the other hand, are usually interconnected, grouped to

offer a determined service (such as web searches or social networks), have similar hardware and

software platforms, and belong under the same management domain. They are usually referred to

as Warehouse Scale Computers (WSC).

Each server in the Cloud is powered by multiprocessor systems. As described in [13],

computers are categorized, from a parallelism point of view, as either SISD (Single Instruction

stream Single Data stream, also known as uniprocessor), SIMD (Single Instruction Multiple

Data, meaning one instruction is executed by different processors using different data streams),

MISD (Multiple Instruction streams, Single Data streams), and MIMD (Multiple Instruction

streams, Multiple Data streams, each processor executes instructions and processes data

independently). Most general purpose multiprocessors are based on MIMD because this model

leverages thread-level parallelism.

2.1 Multiprocessors

 A Multiprocessor is a type of computer composed by a tightly coupled group of

processors that share a memory address space, running under the same operating system [13].

According to their memory organization, multiprocessors are divided in two groups:

www.manaraa.com

5

1. Symmetric (shared-memory) multiprocessors (SMP, also referred to as Uniform Memory

Access multiprocessors, UMA), which usually have a low number of cores, all of which

will have symmetric access to a centralized memory.

2. Distributed Shared Memory multiprocessors (DSM), which are able to support a larger

number of cores since the memory is distributed, allowing for more bandwidth and less

latency. DSM are also known as Non-Uniform Memory Access multiprocessors

(NUMA). Figure 1 illustrates a typical NUMA multiprocessor. It encompasses several

multicore nodes interconnected via a network. Memory is shared across nodes, although

the access time to the local portion of memory on each node will be less than the access

time to a remote memory.

Figure 1: NUMA multiprocessor

 One of the challenges in distributed memory systems is cache coherence. If a traditional

snooping protocol were to be used, traffic towards memory would increase considerably, and the

very purpose of distributing memory to allow for more bandwidth towards memory would be

meaningless.

www.manaraa.com

6

For this reason, NUMA multiprocessors sometimes use a directory protocol as an

alternative to snooping-based cache coherence. However, snooping protocols are also used in

multiprocessors; in section 2.2.2, an overview of MESI protocol is given, as this is the one

implemented in the hardware used in this work.

2.2 MESI protocol

 MESI (Modified, Exclusive, Shared, Invalid), is a multiprocessor invalidate protocol. It

reduces bus traffic [17] by using write-back instead of write-through caches. The current state of

each cache line (2 bits) can be as follows:

 Modified: the cache line has been modified and is not consistent with main memory

(dirty).

 Exclusive: the cache line is consistent with main memory (clean) and is the only cached

copy.

 Shared: the cache line matches main memory, but several copies of the line exist in other

caches.

 Invalid: Line is not valid (no processor has it)

Figure 2 shows a State Transition Diagram for MESI. The dotted lines indicate transactions

initiated by the bus. Continuous lines indicate transactions initiated by processor.

www.manaraa.com

7

Figure 2: MESI protocol State Transition Diagram [21]

Each cache line will change its state as a function of memory accesses. The two possible

operations are Reads and Writes to cache blocks. In the event of a Read miss, the block is loaded

and its state will change to Exclusive if it was uncached in memory [19] or Shared if it was

already shared, modified or exclusive.

If there is a Write miss, the block is loaded and marked Modified. All other cached copies

are invalidated. On a Write Hit to an Exclusive or Shared block, the block is changed to

Modified in both cases but invalidated for other cached copies only in the latter case.

2.3 Cloud Software

In general, Cloud characteristic applications have a high level of parallelism, handle large

amounts of data, and are latency sensitive. They are often divided into offline and online services

[14]. Online services comprise typical real-time transactions such as e-mail, web searches, etc.,

and offline services are used in large-scale data processing, either to generate a parallel

www.manaraa.com

8

computation from a large dataset, such as graph processing or to analyze data to be used in an

online application, such as processing satellite images for location services. Due to the scale-out

nature of these applications, growth is addressed by adding more servers [16]. As a consequence,

the performance of each individual server will shape the overall performance of the Cloud.

Unfortunately, the design of processors currently driving the Cloud was carried out with

desktop scale-up workloads. As the Internet becomes more popular, a number of Cloud

benchmarks have emerged, favoring scale-out behavior. In [15], an overview of the 4 most

representative datacenter applications is presented: Web Search, Memory Caching, MapReduce,

and Graph Analysis. A general overview of the survey is presented in this section.

- Web Search: The usual operation of a web search engine in a system with multiple

servers starts by crawling, indexing and organizing data with a batch application.

Web Search characteristic benchmarks adjust the size of the index so that it can be

fitted into memory in order to avoid network and storage I/O. The index is divided

evenly across servers, and then each server will use the index to calculate the

relevance scores for each page before sending them to an aggregator which ultimately

will produce the results for the user.

- Memory Caching: Due to the high latency of disk accesses, many popular services

(such as Facebook) cache their non-media data in memory. One of the most popular

frameworks for memory caching is Memcached, defined in [21] as “an in-memory

key-value store for small arbitrary data (strings, objects) from results of database

calls, API calls, or page rendering”. This arbitrary data is held in slabs inside the

memory; both the data and slab size are determined by Memcached with the goal of

increasing cache hit rates.

www.manaraa.com

9

- MapReduce: the basic idea behind MapReduce is that computations are performed by

splitting data across nodes. It consists of a run-time system, which is in charge of

managing the deployment of the Map and Reduce functions specified by the

programmer. The Map part applies a function to each section of the input data and

produces a key-value pair, which is to be computed by the Reduce function to

produce a result.

- Graph Analysis: Graphs are frequently used by online service providers to analyze

user preferences and produce recommendations. In the case of social networks,

Graphs are widely used to evaluate the influence of a user or an organization.

Frameworks for graph processing allow asynchronous, dynamic, parallel

computations, and task ordering according to data locality.

2.4 Related Work

 Since Cloud computing has emerged as a utility in recent years, there is an increased

effort in studying both the characteristics of Internet applications and hardware. Most studies

have identified inefficiencies in modern hardware, due to the fact that server processors were

designed with scale-up desktop applications in mind.

As explained in [1], the high instruction cache miss rate, low level of parallelism, and low

requirements for bandwidth from scale-out applications, are some of the aspects that were not

accounted for when designing server processors. They find that the instruction working sets of

scale-out applications exceed both L1 and L2 capacity, but are smaller than LLC capacity.

Moreover, LLC (which occupies more than half the die area) size beyond 6MB has minimal

performance impact on scale-out workloads, due to their massive dataset size. They also point

www.manaraa.com

10

out that because the complexity of Cloud applications is not taken into consideration, simple

next-line prefetchers are not ideal for server multiprocessor systems.

In [3], server multiprocessor inefficiencies are also pointed out. The authors use some of

the CloudSuite benchmarks to study the behavior of scale-out workloads on modern processors.

They use Intel VTune to read performance counters and draw some micro-architectural

conclusions, such as the high Instruction Cache miss rate from scale-out workloads, the low

instruction level parallelism and memory-level parallelism from scale-out workloads, and also

observe that bandwidth to memory is usually overprovisioned.

 The PARSEC suite is used in [23], and it is shown that how threads are scheduled to

share cache in different scenarios, has no impact on performance. In [4], the impact of memory

resource sharing is studied for industry-strength datacenter applications; it is observed that thread

to core mapping does have an effect, with up to 40% swings in performance for certain

applications. Multiple thread-to-core mapping scenarios are considered in this publication, the

ideal mapping for applications running alone on a server is identified, and it is observed that the

optimal thread to core mapping will change depending on the co-running application. They

propose three key characteristics of memory-application interaction that can determine the

optimal thread-to-core mapping: Memory Bandwidth Usage, Data Sharing, and Cache Footprint.

www.manaraa.com

11

CHAPTER THREE: CLOUDSUITE OVERVIEW

 Since the Internet became an every-day life utility, the popularity of Cloud-based services

such as web search, video streaming, social networks and multiple on-line shopping related

transactions, has led to an increase in the demand for more robust servers to power Warehouse

Scale Computers. Architectural decisions made for the design of processors being currently used

in modern Cloud servers are based on traditional desktop computer benchmarking tools that

mostly benefit scale-up workloads [1]

 CloudSuite 3.0, a benchmark suite of emerging online services, provides real-world latency

sensitive applications that handle large datasets to simulate common cloud massive data

managing and gives an accurate performance assessment of modern server processors. It was

designed based on a detailed michroarchitectural review of scale-out workloads.

 By using performance counters, CloudSuite authors in [1] find that scale-out workloads

have high instruction cache miss rates, have low instruction and memory-level parallelism, have

low requirements of bandwidth and see no performance benefit from large LLC. They also

analyze the most popular online services and find common characteristics across scale-out

workloads:

- Scale-out run on large datasets that are divided into a large number of hosts.

- Requests served by scale-out workloads do not share any state.

- Account for unreliable machines in the underlying running infrastructure with

specific application software.

- High-level task managing is handled with inter-machine connectivity.

 Moreover, they find inefficiencies in the design of processors currently running Cloud

applications. For instance, the high instruction cache miss rate from scale-out workloads cause

www.manaraa.com

12

stalls, the oversized LLC adds significant latency (from fetching instructions from LLC), and the

simple next-line prefetchers do not account for the complexity of Cloud applications, which as

described by the authors in [1], are written in high-level languages, execute OS code, use third

party libraries and have non-sequential access patterns.

 CloudSuite aims at assessing the performance of modern hardware by representing real-

world setups. Five CloudSuite benchmarks were selected for this work: Graph Analytics, In-

Memory Analytics, Data Serving, Web Search, and Media Streaming. They are classified into

Offline and Online Benchmarks. The following section comprises a high level overview of the

functionality of these applications.

3.1 Offline Benchmarks

 CloudSuite offline benchmarks [5] do not offer real-time metrics such as throughput or

latency, but instead perform computations over large datasets. The performance criteria will be

completion time.

3.1.1 Graph Analytics

 The input of this benchmark is a large Twitter graph dataset that is processed using

GraphX. The output of the benchmark is the influence of each user in the dataset, computed with

PageRank. The job is distributed among all active or specified threads with significant

communication across cores, due to the nature of the dataset. The performance metric is

Running time, or the time it took the server to calculate the influence of each user.

3.1.2 In-Memory Analytics

 This benchmark works as a recommendation system. The client container will take a

dataset holding a large list of movies and will output a ranking based on an algorithm that uses

matrix factorization to calculate user preferences. The performance metric is Running

www.manaraa.com

13

(completion) time or the time it took for the application to compute recommendations. This

benchmark will run in memory, and it is possible to allocate a certain amount of memory for

each run, depending on the selected dataset size.

3.2 Online Benchmarks

 CloudSuite online benchmarks provide real-time metrics, such as latency and throughput.

These applications aim at simulating popular online services, such as streaming, search engines,

and other types of online queries.

3.2.1 Data Serving

 This application is based on YCSB (Yahoo! Cloud Serving Benchmark) which is basically

a framework to measure performance of data store systems [6]. The objective of this benchmark

is to simulate the behavior of popular online services that rely on NoSQL databases, such as

airplane ticket reservations.

 In a typical scenario where a reservation is to be made, the user will send a read request to

a frontend server. A read request is then sent from the frontend server to a backend server, which

will consult in a NoSQL database, and reply with the requested information. Once the user

decides to proceed with the reservation, a write request will be sent to de frontend server and

then from there to the backend server.

 CloudSuite Data Serving models this behavior with a client container that will act as a

request emulator and will send read and write requests to a backend server (a Docker container

that starts a Cassandra server and mounts the dataset volume, held in a Docker container as well).

A Docker network is also created to interconnect all the components. The output metrics for this

benchmark are throughput (read and write operations per second) and latency.

www.manaraa.com

14

3.2.2 Web Search

 Based on the Apache Solr search engine framework, CloudSuite Web Search simulates a

typical online search scenario, where a client sends requests to several index nodes with a

determined query. In this case, a server Docker container will hold several index nodes images,

and a client Docker container will send queries. A Docker network is used to interconnect all

components. The output of this benchmark used in this work is throughput, given in ops/sec

(search operations per second).

3.2.3 Media Streaming

 This benchmark is comprised of a client based on httperf (traffic generator) that will send

requests for video streaming to a server. A Docker container for each is created along with a

dataset that contains several videos of different durations and qualities and a Docker network to

interconnect all components. The performance metric is Net I/O (the streaming bandwidth) given

in Kbps.

www.manaraa.com

15

CHAPTER FOUR: SANDY BRIDGE OVERVIEW

 The four node distributed shared memory processor used in this work (Intel Xeon E5-4620)

is based on the microarchitecture code name Sandy Bridge. As explained in [7] it consists of a

Front End unit in charge of fetching and decoding instructions into micro operations, a

superscalar component capable of sending up to six micro-ops per cycle, and an in-order

retirement unit that will ensure the results of the execution of the micro-ops follow program

order.

 Typically, the processor will search for the next instructions to execute, depending on the

block selected by the Branch Prediction Unit, first on the Instruction cache and then progressing

into the remaining levels of cache, L2 and L3, and then main memory. The generated flow of

micro-ops is then dynamically scheduled and executed according to data order (instruction

retirement will be consistent with program order).

 4.1 Cache Hierarchy

 There are three levels of cache in this architecture. In the first level, the L1 D (level 1 data

cache) is “private” for each core, but can be shared in the event that multithreading is supported

and enabled. There is also a L1 Instruction cache, with the same size as L1 DCache (32KB). L2

cache (256KB) is also dedicated to each core, but unified for instructions and data. LLC is

interconnected to all cores in a node (also referred to as socket in this document) by a ring

topology. For the Intel Xeon E5-4620, the LLC (L3) capacity is 16MB. L1 (both Data and

Instruction), L2, and L3 are 8-way associative.

 Snooping is managed across all levels of cache with MESI [8] (modified, exclusive, shared,

invalid) cache coherence protocol. Each cache line on L1D, L2, and L3 has two MESI status

www.manaraa.com

16

flags. Each of the flags will be marked according to the cache line state. Load and Store requests

are managed in L1D.

4.1.1 Memory Reads

 When data is required by an instruction, the core will read to L1, L2 and then L3 (memory

if there is an L3 miss). All data contained in L2 and L1 should also appear in L3. Each L3 line is

flagged to indicate which cores might hold that data, and if it is the case, L1D and L2 of a core

that apparently has said data, will be looked up. If modified data is to be fetched, it will be

referred to as a “dirty hit”. If the data to be fetched is unmodified, it is called a “clean hit”. In

general, a clean hit will have lower latency than a dirty hit (60 cycles vs 43).

4.1.2 Memory Writes

 In order to write to a memory location, the processor checks if it has the line on its L1D

cache (in modified or exclusive MESI state). If the line is not found or is not in the right state, it

will continue to search in the next levels of cache, caches from other cores, and memory. As

soon as the line is in L1D, write will happen.

4.1.3 Last Level Cache

 The LLC is divided and shared among available cores in the node. There is one portion of

the cache assigned to each core. Each portion has one section for data coherency, memory

ordering, LLC misses, writeback to memory, etc., and one section for cache lines (logic and data

array sections respectively). LLC is interconnected to cores and memory controller via a ring

topology (the bus encompasses four independent rings: data, request, acknowledge, and snoop,

as described in [18]) and runs at the same frequency as the core clock, unlike previous

generations.

www.manaraa.com

17

4.1.4 Memory Controller

 Accesses from the ring domain are managed by an arbiter, which is part of the Uncore (also

referred to as System Agent). Memory traffic is forwarded from the arbiter to the memory

controller, which supports multiple channels of DDR (4 in the Intel® Xeon® E5-4620, as

illustrated in [18]), each channel being capable of running memory requests independently and

contains an out of order scheduler that minimizes latency and maximizes memory bandwidth.

 A write to the memory controller is considered completed when it is written to the write-

data-buffer (each channel has a 32 cache-line write-data-buffer, which is flushed out to main

memory at a different point in time, so that it does not affect write latency) [7].

www.manaraa.com

18

CHAPTER FIVE: EXPERIMENTS AND RESULTS

 The hardware used in this work is a four socket Intel® Xeon® E5-4620 processor. There

are 8 cores per module and each core is capable of supporting up to two threads at a time. Only

single threaded cores are used in this experiment. Each core has two levels: L1 and L2 of

dedicated cache. L3 is shared between cores on the same node, with a “dedicated” portion of the

cache for each core, which will be accessed faster by itself, but can also be accessed by other

cores. The processor runs on a Dell PowerEdge R820 server with Ubuntu trusty 14.04 kernel

release 3.19.0-25

 The first part of the experiment consisted in testing each one of the five chosen CloudSuite

Benchmarks (Graph Analytics, In-Memory Analytics, Data Serving, Web Search, and Media

Streaming) running separately without specifying thread to core mappings. By default, the

application threads are distributed by the OS scheduler among all active cores. To verify memory

usage and core activity, the htop system monitor was run for all measurements.

Figure 3: Intel® Xeon® Processor E5-4620 Memory Hierarchy overview

www.manaraa.com

19

 To assess the impact of memory resource sharing (either L3 or the memory controller

channel on each node), and also consider the effect of running a cloud-based application

simultaneously on different nodes without L3 sharing, four cores at a time were used. If 8 cores

were to be used simultaneously, the scenario in which L3 and the memory controller channel are

not shared across active threads of a given application could not be measured. Three different

thread to core mapping scenarios were considered according to the architecture used in this

work:

1. One core per node: 4 threads of the application running alone are distributed across the

four available nodes, assigning one thread per core on each node. The objective of this

setting is to assess the performance of each application when neither L3 nor memory

controller channel are shared. It would be expected for contentious applications to be

benefited from this configuration. Some degree of degradation should be perceived in

non-contentious applications with significant data sharing.

Figure 4: 4 Cores running simultaneously without sharing L3 or memory controller

channel

2. Two cores per node: 4 threads of the application running alone are distributed across 2

nodes, with two cores per thread on each node. Both L3 and memory controller channel

are shared in this setting; however, only by two threads at a time.

www.manaraa.com

20

Figure 5: 4 Cores running simultaneously, L3 and memory controller channel are shared

between two cores only.

3. Four cores per node: 4 threads of the active application running alone will be mapped to

four cores on the same node. L3 and memory controller channel are shared by all used

cores. The main difference between this configuration and the two cores per node setting

is that more traffic through the memory controller channel is expected. Contentious

applications should perceive degradation on this setting whereas applications with

sharing of data should perform better.

Figure 6: 4 Cores running simultaneously on the same node. L3 and memory controller

channel are shared across all 4 cores.

www.manaraa.com

21

 The metric used to measure performance is the actual output of each benchmark. IPC is not

considered since it is not a reliable indicator of performance in the case of multithreaded

applications running on multiprocessor systems. As shown in [9], variations of IPC, either

increase or decrease, not necessarily will reflect a performance improvement or detriment. The

metrics used for each benchmark are enumerated in Table 1.

Table 1: Benchmark Metrics

Benchmark Metric Unit

Graph Analytics Average Running Time ms

In-Memory Analytics Average Running Time ms

Media Streaming Average Net I/O Kbps

Web Search Throughput (search ops/s) ops/s

Data Serving Throughput - R/W ops/s

5.1 Benchmark characterization

 The process of running each benchmark requires downloading and running several Docker

containers. In general, CloudSuite offline benchmarks require an image of the container that will

run the benchmark and also a dataset. CloudSuite Online applications rely on a dataset, at least

one server, one client and a network container to interconnect them. In this experiment, CPU

affinity of the benchmarking Docker container is given passing the --cpuset-cpus <core IDs>

argument. Core IDs are fetched from /proc/cpuinfo by using lscpu. The corresponding ID of

cores is shown in Figure 3. Each benchmark was run in a loop of 10 iterations per configuration,

using different core combinations according to each type of memory resource sharing scenario

being tested. For instance, in the 4 Cores per Node case, the benchmark was run ten times on

each node. Core combinations are shown in Table 2.

www.manaraa.com

22

Table 2: Sets of cores for each 4 core test case

Configuration Sets of cores

1 Core per Node

{0,1,2,3}, {4,5,6,7}

{8,9,10,11}, {12,13,14,15}

2 Cores per Node

{0,4,1,5}, {0,4,2,6}, {0,4,3,7}

{1,5,2,6}, {1,5,3,7}, {2,6,3,7}

4 Cores per Node

{0,4,8,12}, {1,5,9,13}

{2,6,10,14}, {3,7,11,15}

 For each of the core set, the benchmarks were run a total of ten times. The output of each

run is then averaged per core configuration. Figure 7 illustrates the results for offline workloads.

The performance metric is Average Running Time (ART, given in milliseconds) for both; a

smaller average running time means better performance. Results for online benchmarks are

shown in Figure 8. The metric for online benchmarks is throughput, meaning higher is better. In

both cases, the results were normalized to the output measure of each benchmark running in the

1 Core per Node Configuration. To ensure threads were mapped as expected, the htop system

monitor was used to verify CPU and memory usage.

Figure 7: Performance results for offline CloudSuite Benchmarks: Graph Analytics and In-

Memory Analytics

www.manaraa.com

23

 For offline benchmarks, there is a significant impact from running on different memory

sharing scenarios. Both applications greatly benefit from sharing LLC and memory controller,

meaning that there is significant sharing of data between active threads. The ART for Graph

Analytics is 5% and 12.1% less on 2 and 4 Cores per node respectively than the ART for 1 Core

per Node. The ART for In-Memory Analytics is 9.4% and 50.6% less on 2 and 4 Cores per node

respectively than the ART for 1 Core per Node. Both applications show better performance when

all of their threads are running on cores on the same node and degrade when no LLC or memory

controller channel are shared.

Figure 8. Performance results for online CloudSuite Benchmarks: Media Streaming, Web

Search, and Data Serving.

 The performance impact of changing memory resource sharing scenarios for CloudSuite

online benchmarks on the other hand, with the exception of Data Serving, does not show any

significant difference. There is a variation of less than 1% on the benchmark outputs

(throughput).

www.manaraa.com

24

 As for Data Serving, a lot of contention for memory resources might explain the

degradation of running this workload on the same node. The best performance is achieved when

no LLC or memory controller channel is shared.

5.2 Eight Core Experiment

 In the event in which cache is large enough to fit the data being processed by each

benchmark, contentious applications might be mistakenly interpreted as non-contentious. To rule

this possible scenario out, and also verify whether the impact of changing the configuration of

memory resource sharing for Media Streaming and Web Search is actually negligible, the

benchmarks were run using eight threads of each (mapped to eight cores). Core configurations

are shown in table 3.

Table 3: Sets of cores for each 4 core test case

Configuration Sets of cores

2 Cores per

Node

{0,1,2,3,4,5,6,7}, {16,17,18,19,20,21,22,23}

{8,9,10,11,12,13,14,15}, {24,25,26,27,28,29,30,31}

8 Cores per

Node

{0,4,8,12,16,20,24,28}, {1,5,9,13,17,21,25,29}

{2,6,10,14,18,22,26,30}, {3,7,11,15,19,23,27,31}

 The same approach to testing as in the 4-core case is used, only this time sharing of

resources is not completely ruled out. In the 2 Cores per node experiment, all four nodes will be

used, meaning LLC and memory controller channel are going to be shared by only two cores,

whereas in the 8 core case, all available cores per node will be active on one node at a time, and

memory resources will be shared among them. Ten iterations of each combination are run, and

the ART for offline applications and Throughput for online applications are averaged and

normalized to the 2 Cores per Node case. Figure 9 shows the results for Graph Analytics and In-

Memory Analytics and Figure 10 shows the results for Media Streaming, Web Search, and Data

Serving.

www.manaraa.com

25

Figure 9: Performance results for offline applications running on 8 cores

Figure 10: Performance results for online applications running on 8 cores

 For the eight core scenario, the same thread as in the four core case is observed. Media

Streaming and Web Search are not impacted at all. Graph Analytics and In-Memory Analytics

benefit from sharing LLC and memory controller channel across all of their active threads. Data

Serving on the other hand, proves to be a contentious application, benefiting from distributing its

eight active threads across all four available nodes.

www.manaraa.com

26

5.3 Performance counter monitor

 In order to verify the effect of sharing memory resources one way or the other (1,2,4 Cores

per node, as discussed previousely) in terms of LLC hit ratio and traffic towards memory, the

Intel® Performance Counter Monitor was used. This application leverages from the performance

counters on Intel processors (enabled by a set of Model-Specific Registers (MSRs) that can be

programmed to report architectural performance monitoring events and are consistent across

michroarchitectures [8]) to report core and uncore michroarchitectural information. The 2.11.1

version was run to measure L3 hits and memory traffic for each one of the selected benchmarks.

 To make measurements as accurate as possible, all samples were taken when the

applications were running alone on the server. One sample of each memory sharing scenario was

used for each one of the workloads. Results from Intel® Performance Counter Monitor and the

performance metric of the benchmark were documented according to the time recorded on the

server timestamp. Once the Performance Monitor was started, the benchmark was then run for a

given combination of cores (1,2,4 per node), the time of the beginning and ending of execution

recorded, and then, results of the Performance Monitor (which were exported to a csv file) were

compared to the previously saved times. The same procedure was then repeated for the next core

combination. Only L3 Hit ratio and memory traffic are included in this report, as those are the

resources that are being shared/not shared in the tests carried out in this work.

 Since a comparison between the trend of the average performance of each benchmark from

part 5.1 was necessary, the outputs of the benchmarks which are illustrated in Figures 11-15

were also analyzed.

www.manaraa.com

27

Figure 11: Graph Analytics normalized Running Time of sample used to take performance

measurements

Table 4: Performance measurements for Graph Analytics

Graph Analytics Performance Monitor results

Metric 1 Core per Node 2 Cores per Node 4 Cores per Node

Average Mem Traffic (GB/s) 0.61679084 1.077128742 1.578444

Average Mem Traffic per core (GB/s) 0.61679084 0.538564371 0.394611

Average L3 Hit ratio 0.273478836 0.33307755 0.369418667

 For Graph Analytics, in Figure 11, Table 4, the trend initially observed is confirmed in this

run. The application benefits from sharing threads on the same node, and degrades when its

threads are split between nodes, with no sharing of memory controller channel or LLC.

Performance monitor results show a correlation between the L3 hit ratio and memory traffic and

the trend of the benchmark performance metric. The lowest Running time for the benchmark,

was in the scenario of all threads running on the same node, which was also the case in which the

L3 hit ratio was the highest (around 0.369, vs 0.333 and 0.273 in the 2 and 4 Cores scenarios

respectively) and the traffic to memory was the lowest (0.394 GB/s, vs 0.539 GB/s and 0.617

GB/s in the 2 and 4 Cores scenarios respectively).

www.manaraa.com

28

Figure 12: In-Memory Analytics normalized Running Time of sample used to take performance

measurements

Table 5: Performance measurements for In-Memory Analytics

In-Memory Analytics Performance Monitor results

Metric 1 Core per Node 2 Cores per Node 4 Cores per Node

Average Mem Traffic (GB/s) 0.265970703 0.480381704 1.5471875

Average Mem Traffic per core (GB/s) 0.265970703 0.240190852 0.386796875

Average L3 Hit ratio 0.520070182 0.578910326 0.630870573

 In-Memory Analytics shows the same trend as was initially observed in 5.1 (Figure 12). A

52.8% improvement in Average Running Time is observed when comparing the 1 Core and 4

Cores per node case. This application also benefits from having all its threads on the same node,

but unlike Graph Analytics, traffic to memory does not degrade performance. Table 5 shows the

performance measurement results. Most of the computations for this benchmark must occur in

L3 (as it can also be inferred from the application name), since in the 4 Cores per Node case the

hit rate is around 0.631, and it decreases as sharing of L3 also decreases in the two following

cases. However, traffic to memory is also the highest for the 4 Cores per Node case, but it does

not affect the output of the benchmark.

www.manaraa.com

29

Figure 13: Data Serving normalized Throughput of sample used to take performance

measurements

Table 6: Performance measurements for Data Serving

Data Serving Performance Monitor results

Metric 1 Core per Node 2 Cores per Node 4 Cores per Node

Average Mem Traffic (GB/s) 0.047459167 0.0471845 0.11754

Average Mem Traffic per core (GB/s) 0.047459167 0.02359225 0.029385

Average L3 Hit ratio 0.6305 0.698475 0.7973

 Contention of resources dominates the performance of Data Serving. As observerd in

Figure 13 and Figure 8, the best throughput is obtained when running the application in the 1

Core per Node scenario. There is an interesting point about this trend: the best and worst

performance are not given by either the 1 Core per Node or the 4 Cores per node like the

previous two benchmarks. Although the best one is the 1 Core per Node scenario, the second

best is the 4 Cores per Node scenario. This trend is set by the memory traffic, as noted in Table

6. The more traffic to memory, the better the performance will be. This actually is coherent with

the metric of the application: read and write operations per second.

www.manaraa.com

30

 Another important point from Data Serving is that there appears to be some degree of

sharing. The L3 hit ratio is the highest for the 4 Cores per node case, decreasing by around 10%

when running on 2 Cores per Node and further degrading in the 1 Core per Node scenario. As

noted in [3] both Data Serving and Web Search use a parallel garbage collector that artificially

induces application level-communication, which explains why the L3 Hit ratio is better as more

sharing of memory resources is present.

Figure 14: Web Search normalized Throughput of sample used to take performance

measurements

Table 7: Performance measurements for Web Search

Web Search Performance Monitor results

Metric 1 Core per Node 2 Cores per Node 4 Cores per Node

Average Mem Traffic (GB/s) 0.056893236 0.085877734 0.059960042

Average Mem Traffic per core (GB/s) 0.056893236 0.042938867 0.01499001

Average L3 Hit ratio 0.537934677 0.508305225 0.641316946

www.manaraa.com

31

Figure 15: Media Streaming normalized Throughput of sample used to take performance

measurements

Table 8: Performance measurements for Media Streaming

Media Streaming Performance Monitor results

Metric 1 Core per Node 2 Cores per Node 4 Cores per Node

Average Mem Traffic (GB/s) 0.03744159 0.057086386 1.5471875

Average Mem Traffic per core (GB/s) 0.03744159 0.028543193 0.386796875

Average L3 Hit ratio 0.700281581 0.755926248 0.630164236

Web Search (Figure 13, Table 7) and Media Streaming (Figure 14, Table 8) are not impacted by

how LLC and memory controller channel are shared. Even though it appears as if there is some

sharing benefit, the garbage collector used in Web Search gives is responsible for such behavior.

In the case of Media Streaming, it is also mentioned in [3] that the server used in this benchmark

tracks the number of sent packages by updating global counters. For both Media Streaming and

Web Search, less traffic to memory is observed when compared to In-Memory Analytics and

Graph Analytics, which could indicate that L2 is sufficient for both applications.

 An important observation from the performance monitor data in all Cloud-Based

applications used in this work, is that memory bandwidth is underutilized. Traffic to memory did

www.manaraa.com

32

not exceed 1.6 GB/s for any application (even when all active threads were running on the same

node), even though the processor is provisioned for 42 GB/s according to technical specifications

[22].

5.4 Performance of selected CloudSuite benchmarks with a co-running application

 How applications will share resources is to be decided by the OS job scheduler. However,

the OS scheduler does not take memory resources into account. Moreover, in order to guarantee

QoS, latency sensitive applications are not usually co-located with non-latency sensitive

applications [3], which results in an underutilization of processing resources.

 The main goal in this part of the experiment is to study whether an offline application, co-

running with an online application and viceversa will have an impact on the optimal thread to

core mapping, assuming the best case scenario as the application running alone on the server

with the same resource sharing configuration as in part 5.1.

5.4.1 Methodology

 The same combinations of 1, 2, and 4 cores per node are used. A total of 4 cores on each

case are considered. A total of 8 threads will be run at a time, 4 for each application. In the 1 core

per node case, 4 threads of each application will be assigned to a core on different nodes.

Application A (either online or offline, depending on each corresponding configuration) will

have one assigned core per thread on each node, and application B (either online or offline,

depending on each corresponding configuration) will be configured in the same way. In the 2

cores per node case, two threads of each application will be running on two cores per node, and

they will be distributed on two nodes as well. Finally, for the 4 cores per node distribution, each

application will have four threads mapped to four contiguous cores, all on the same node. Figure

16 shows configurations for each scenario.

www.manaraa.com

33

Figure 16: Thread to core mapping for co-running applications.

 Each co-running scenario is normalized to the benchmark running on the 1 Core per Node

configuration in the same scenario. Since the effect of assigning threads of Media Streaming and

Web Search to different core configurations has a negligible effect on the performance of these

applications (when running alone with either four or eitght threads at a time), it is also verified

that the same result is achieved when placing them along with either latency sensitive or non-

sensitive applications. In both cases, the variation in average trhoughput per configuration is less

than 1.7%. Figures 17 and 18 illustrate this behavior.

www.manaraa.com

34

Figure 17: Media Streaming co-running with offline and online benchmarks. Normalized to 1

Core per Node configuration.

Figure 18: Web Search co-running with offline and online benchmarks. Normalized to 1 Core

per Node configuration.

 The offline benchmarks used in this experiment, Graph Analytics and In-Memory

Analytics show the same behavior as in 5.1, as shown in Figure 19 and 20 respectively. Both

benefit from having all of their threads in the same node, even if both are sharing the node with

another application using the same number of threads. These applications degrade when their

threads are running separately.

www.manaraa.com

35

Figure 19: Graph Analytics co-running with offline and online benchmarks. Normalized to 1

Core per Node configuration.

Figure 20: In-Memory Analytics co-running with offline and online benchmarks. Normalized to

1 Core per Node configuration.

 The nature of the co-runner of Data Serving will change the ideal thread to core mapping of

the application dramatically, as shown in Figure 21. When running solo, the best scenario was

when running on separate nodes. However, if threads of In-Memory Analytics are added, the

best mapping for this application is the 4 Cores per Node scenario. If the co-runner is an online

application like Media Streaming, the optimal scenario will be the 2 Cores per Node one.

www.manaraa.com

36

Figure 21: Data Serving co-running with offline and online benchmarks. Normalized to 1 Core

per Node configuration.

www.manaraa.com

37

CHAPTER SIX: A THREAD-TO-CORE SCHEDULING ALGORITHM

 OS schedulers do not account for memory resource sharing or characteristics of the running

application when assigning threads to particular cores, as noted in [4]. The OS scheduler focuses

mainly on prioritizing cache affinity and load balancing. Even though threads can be assigned to

a determined core or cores by the programmer, this will be dependent on the underlying

architecture of the processor and the structure of the application.

 In this section, an algorithm to schedule threads to cores according to the characteristics of

each application, in terms of data sharing and how they benefit or degrade depending on how

threads are distributed to either share or not LLC and memory controller channel is proposed.

The impact of Co-Running applications is also taken into consideration, and the algorithm will

produce an output for Cloud-Based applications running solo or with another Cloud-Based

workload. This algorithm does not intend to replace the existing OS scheduler, but to provide an

approach to optimize performance and memory resource usage on top of the Operating System,

leveraging from CPU affinity to assign threads to cores.

 The inputs to the algorithm are: the Application type, which can be either offline or online

and the Co-Running Application type, which can also be offline, online, or none (meaning there

will be no Co-Runner for the given application). Online applications can either be Read/Write

(applications that issue both, read and write requests, such as Data Serving) or Read Only

(applications similar to Web Search and Media Streaming, which only send Read requests and

are not significantly affected by how memory resources are shared). For Read Only Online

applications, the assigned mapping will be 2 Cores per Node, since there is some level of sharing

(not as much as in the 4 Cores per Node case) while at the same time fewer nodes are used in this

scenario compared to 4 Cores per Node.

www.manaraa.com

38

 The output of the algorithm will be the optimal memory resource sharing scenario (1,2 or 4

Cores per Node, same configuration as in section 5.4.1, Figure 16) for the requested application

running alone or with another Cloud-Based application. The same configuration will apply to the

Co-Running application, if there is one.

 The possible values for the Application Type (defined as App_Type) are: Offline,

Online_R, and Online_RW. For Co-Running Application Type, defined as Co_Run_Type, the

values are: C_Online_RW, C_Online_R, C_Offline, and C_None. As for the output, defined as

“Schedule” the possible values are 1_Core_per_Node, 2_Cores_per_Node, and

4_Cores_per_Node.

If App_Type = Offline then

 Schedule = 4_Cores_per_Node;

If App_Type = Online_R then

 Schedule = 4_Cores_per_Node;

If App_Type = Online_RW and Co_Run_Type = C_None then

 Schedule = 1_Core_per_Node;

If App_Type = Online_RW and Co_Run_Type = C_Offline then

 Schedule = 4_Cores_per_Node;

If App_Type = Online_RW and Co_Run_Type = C_Online_R then

 Schedule = 2_Cores_per_Node;

Figure 22: Proposed Algorithm

 Figure 22 illustrates the proposed scheduling approach. Since Offline applications, Graph

Analytics and In-Memory Analytics, or in general, applications that compute large amounts of

data in a distributed fashion and produce a computation (which also have significant data

sharing), the best scenario is to have all threads of the workload running in the same node,

sharing LLC and memory controller channel, which is defined here as 4 Cores per Node.

www.manaraa.com

39

 As described in chapter 5, Online applications that have low LLC (L3 for the architecture

used in this work) usage, little traffic to memory, and only send read requests to a remote server

(Media Streaming and Web Search) will run mostly on L2. For that reason, the LLC and memory

controller channel sharing will not impact performance in this case. Initially, the 2 Cores per

Node was assigned to this particular case, mainly because if 1 Core per Node were to be used,

the 4 available nodes would be occupied unnecessarily, and if the 4 Cores per Node were to be

used, the memory controller channel in that particular node would have a slight but unnecessary

increase in traffic. However, because these two online applications are not impacted by the

sharing of LLC and memory controller channel, the performance for the co-running application

was also taken into consideration in this case. Due to their high level of data sharing, Graph

Analytics and In-Memory analytics degrade significantly when their threads are not running on

the same node (More than 50% for In-Memory Analytics and around 18% when compared

running on 1 Core per Node vs 4 Cores per Node), whereas the degradation for Data Serving

when running on the 1 Core per Node configuration vs 4 Cores per Node configuration is around

5%.

 In the case of Online applications that also send Read and Write requests to a remote server

(such as Data Serving), the optimal memory resource sharing scenario varies depending on the

Co-Runner. If the application is running alone, the 1 Core per Node scenario will be the best

(because of the low level of data sharing and substantial contention of resources). If the Co-

Runner is an offline application, the 4 Cores per Node scenario will be optimal. Finally, if the

Co-Runner is an Online application that only sends read requests to a remote server, the optimal

mapping will be 2 Cores per Node.

www.manaraa.com

40

Table 9: Optimal Scheduling results from proposed Algorithm

 The prediction results from the algorithm are shown in Table 9. The predicted Best

Configuration will apply to both, the main and co-running application. For the main

configuration, all predicted scenarios are optimal. For the co-running applications, only the

scenario of Data Serving co-running with either Web Search or Media Streaming would be sub

optimal, with a ~5% decrease in throughput when compared to the 1 Core per Node

configuration, as shown in Figure 21.

www.manaraa.com

41

CHAPTER SEVEN: CONCLUSION AND FUTURE WORK

7.1 Conclusion

 Five CloudSuite benchmarks were characterized according to how LLC and memory

controller channel are shared.

 In applications that are not latency sensitive, handle huge amounts of data and perform a

computation as output, such as Graph Analytics and In-Memory Analytics, sharing dominates,

meaning these applications will benefit if all of their active threads are sharing LLC and the

memory controller channel.

 In applications that perform read/write requests to a remote server such as Data Serving,

the contention of resources dominates, meaning there is very little sharing of data, and for that

reason, this applications will degrade if LLC and memory controller channel are shared.

 For other latency sensitive applications, with relatively small datasets, that only send read

requests to a remote server, L2 cache is sufficient, meaning how LLC and memory controller

channel are shared, has a negligible effect on performance. It is also observed that there is less

traffic to main memory from these two applications (Media Streaming and Web Search) when

compared to other applications that run on large datasets.

 Memory bandwidth in the used server Multiprocessor system is underutlized, as can be

inferred from the Performance Monitor data in all Cloud-Based applications used in this work.

Traffic to memory did not exceed 1.6 GB/s for any application (even when all active threads

were running on the same node), even though the processor is provisioned for 42 GB/s according

to technical specifications, meaning only up to 3.8% of the available bandwidth was occupied.

 It is also noted that a co-running application can change the optimal memory resource

sharing scenario for latency sensitive benchmarks that send read/write requests, but has little

www.manaraa.com

42

impact in the optimal memory resource sharing of offline applications and latency sensitive

applications that only send read requests to a remote server, regardless of their level of data

sharing or their optimal mapping.

 Finally, an algorithm (intended to run on top of the OS) that schedules threads to cores is

proposed, based on each Cloud-Based application characteristics and the impact of running it

under different memory resource sharing scenarios, either alone or with a co-running application.

7.2 Future Work

 DDR3 is widely used in commercial servers and is optimized for bandwidth but not for

energy efficiency. As noted in [11], 30% of the power consumption in Datacenters comes from

DRAM; however, Cloud applications stress memory capacity and latency but use just a small

percentage of the peak provisioned bandwidth [12].

 Since memories designed for mobile platforms are optimized for low energy per bit, the

impact of running Datacenter applications on LPDDR2 based servers vs DDR3 based servers is

studied in [12]. Although significant energy efficiency improvements are observed, there is a

small performance penalty. An interesting experiment would be to schedule threads of different

Cloud-Based applications (according to their characteristics in terms of data sharing and how

they benefit/degrade from memory resource sharing) in mobile-based servers, such that LLC and

the memory controller channel are used effectively, achieving both, energy proportionality and

improved performance.

www.manaraa.com

43

APPENDIX A: INTEL® XEON® E5-4620 SPECIFICATIONS

 Intel® Xeon® Processor E5-4620

Lithography 32nm

of Sockets 4

of Cores per Socket 8

Max # of Threads per Socket 16

Processor Base Frequency 2.2 GHz

Max Turbo Frequency 2.6 GHz

VID Voltage Range 0.6V - 1.35V

Max Memory Size 384 GB

Memory Types DDR3 800/1066/1333

Max Memory Bandwidth 42.63 GB/s

Instruction Set 64-bit

L1 Dcache 32 KB, 8-Way, 64-byte size line, Writeback

L1 Icache 32 KB, 8-Way

L2 Cache (Unified) 256 KB, 8-Way, 64-byte size line, Writeback

L3 Cache 16 MB, 16-Way, 64-byte size line, Writeback

L3 Cache bandwidth 192 bytes/clock

www.manaraa.com

44

APPENDIX B: CLOUDSUITE CLIENT CONTAINER PARAMETERS

#Graph Analytics

docker run --cpuset-cpus=<cpu #s> --rm --volumes-from data

cloudsuite/graph-analytics --driver-memory 16g

#In-Memory Analytics

docker run --cpuset-cpus=<cpu #s> --rm --volumes-from data_movies

cloudsuite/in-memory-analytics /data/ml-latest-small

/data/myratings.csv

#Data Serving

docker run --cpuset-cpus=<cpu #s> -it --name <clientname> --net

serving_network cloudsuite/data-serving:client cassandra-server

#Web Search

docker run --cpuset-cpus=<cpu #s> -it --name <clientname> --net

search_network cloudsuite/web-search:client 172.22.0.2 50 90 60 60

#Media Streaming

docker run --cpuset-cpus==<cpu #s> -t --name=<clientname> -v

$path1:/output --volumes-from streaming_dataset --net streaming_network

cloudsuite/media-streaming:client streaming_server

www.manaraa.com

45

REFERENCES

[1] Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D., . . . Falsafi, B.

(2012). Clearing the clouds: A study of emerging scale-out workloads on modern

hardware. ACM SIGARCH Computer Architecture News, 40(1), 37-48.

doi:10.1145/2189750.2150982

[2] Palit, T., Shen, Y., & Ferdman, M. (2016). Demystifying cloud benchmarking. Paper

presented at the 122-132. doi:10.1109/ISPASS.2016.7482080

[3] Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D., . . . Falsafi, B.

(2014). A case for specialized processors for scale-out workloads. IEEE Micro, 34(3), 31-42.

doi:10.1109/MM.2014.41

[4] Tang, L., Mars, J., Vachharajani, N., Hundt, R., & Soffa, M. L. (2011). The impact of

memory subsystem resource sharing on datacenter applications. ACM SIGARCH Computer

Architecture News, 39(3), 283-294. doi:10.1145/2024723.2000099

[5] “Data Serving · CloudSuite.” Available:

http://cloudsuite.ch///pages/benchmarks/dataserving/.

[6] “2016-CloudSuite-EuroSys-Tutorial.pdf.” Available:

http://cloudsuite.ch//public/presentations/2016-CloudSuite-EuroSys-Tutorial.pdf.

[7] “Intel® 64 and IA-32 Architectures Optimization Reference Manual” Available:

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-

optimization-manual.html

[8] “Intel® 64 and IA-32 Architectures Software Developer’s Manual” Available:

https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf.

[9] Alameldeen, A. R., & Wood, D. A. (2006). IPC considered harmful for multiprocessor

workloads. IEEE Micro, 26(4), 8-17. doi:10.1109/MM.2006.73

[10] Mars, J., Vachharajani, N., Hundt, R., & Soffa, M. L. (2010). Contention aware execution:

Online contention detection and response. Paper presented at the 257-265.

doi:10.1145/1772954.1772991.

[11] “Energy-Efficient Data Centers and Systems.” Available:

https://pdfs.semanticscholar.org/3e24/0e06d79bf43ece6504be3d3b22e5e08afb06.pdf.

[12] Malladi, K., Lee, B., Nothaft, F., Kozyrakis, C., Periyathambi, K., & Horowitz, M. (2012).

Towards energy-proportional datacenter memory with mobile DRAM. ACM SIGARCH

Computer Architecture News, 40(3), 37-48. doi:10.1145/2366231.2337164

www.manaraa.com

46

[13] Hennessy, J. L., & Patterson, D. A. (2014). Computer architecture: A quantitative

approach (4th ed.). Burlington: Elsevier Science.

[14] Barroso, L. A., Clidaras, J., & Hölzle, U. (2013). The datacenter as a computer, 2nd

edition (2nd ed.) Morgan & Claypool Publishers.

[15] Lee, B. C. (2016). Datacenter design and management: A computer architect's perspective.

San Rafael, California (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool.

[16] Lotfi-Kamran, P., Grot, B., Ferdman, M., Volos, S., Kocberber, O., Picorel, J., . . . Falsafi,

B. (2012). Scale-out processors. Paper presented at the 500-511.

doi:10.1109/ISCA.2012.6237043

[17] “Mesi.pdf.” Available:

http://www.cs.utexas.edu/~pingali/CS377P/2017sp/lectures/mesi.pdf.

[18] “Intel® Xeon® Processor E5-2600/4600 Product Family Technical Overview | Intel®

Software.” Available: https://software.intel.com/en-us/articles/intel-xeon-processor-e5-

26004600-product-family-technical-overview#_Toc341794173.

[19] “Coherence.pdf.” Available:

https://people.cs.pitt.edu/~melhem/courses/xx45p/coherence.pdf.

[20] “MESI Protocol.” Wikipedia, March 3, 2017.

https://en.wikipedia.org/w/index.php?title=MESI_protocol&oldid=768301337.

[21] “Memcached/Memcached.” GitHub. Available: https://github.com/memcached/memcached.

[22] “Intel® Xeon® Processor E5-4620 (16M Cache, 2.20 GHz, 7.20 GT/S Intel® QPI) Product

Specifications.” Intel® ARK (Product Specs). Available:

http://ark.intel.com/products/64607/Intel-Xeon-Processor-E5-4620-16M-Cache-2_20-GHz-

7_20-GTs-Intel-QPI.

[23] Zhang, E., Jiang, Y., & Shen, X. (2010). Does cache sharing on modern CMP matter to the

performance of contemporary multithreaded programs? Paper presented at the 203-212.

doi:10.1145/1693453.1693482

www.manaraa.com

VITA

Ana Bernal Montana is a graduate student at the University of Texas at San Antonio. She

is pursuing a Master of Science degree in Electrical Engineering and currently works as a System

Validation Engineer at Intel Corporation. She is originally from Colombia, where she earned a

Bachelor’s degree in Electronics Engineering at Universidad Santo Tomas, Bogota. Her future

plans include trying for a PhD in Computer Engineering, exploring research opportunities, and

eventually becoming a Computer Architect.

